
Discovering Likely Mappings between APIs using

Text Mining

Rahul Pandita

North Carolina State University, USA

Email: rpandit@ncsu.edu

Raoul Praful Jetley and Sithu D Sudarsan

ABB Corporate Research, India

Email: {raoul.jetley, sudarsan.sd}@in.abb.com

Laurie Williams

North Carolina State University, USA

Email: williams@csc.ncsu.edu

Abstract—Developers often release different versions of their
applications to support various platform/programming-language
application programming interfaces (APIs). To migrate an appli-
cation written using one API (source) to another API (target),
a developer must know how the methods in the source API
map to the methods in the target API. Given a typical platform
or language exposes a large number of API methods, manually
writing API mappings is prohibitively resource-intensive and may
be error prone. Recently, researchers proposed to automate the
mapping process by mining API mappings from existing code-
bases. However, these approaches require as input a manually
ported (or at least functionally similar) code across source and
target APIs. To address the shortcoming, this paper proposes
TMAP: Text Mining based approach to discover likely API
mappings using the similarity in the textual description of the
source and target API documents. To evaluate our approach, we
used TMAP to discover API mappings for 15 classes across: 1)
Java and C# API, and 2) Java ME and Android API. We com-
pared the discovered mappings with state-of-the-art source code
analysis based approaches: Rosetta and StaMiner. Our results
indicate that TMAP on average found relevant mappings for 57%
more methods compared to previous approaches. Furthermore,
our results also indicate that TMAP on average found exact
mappings for 6.5 more methods per class with a maximum of
21 additional exact mappings for a single class as compared to
previous approaches.

I. INTRODUCTION

Software is ubiquitous and of late people are increasingly

interacting with software applications that run on variety of

software platforms on daily basis. To retain existing users

(and attract new users) across different platforms, developers

are increasingly releasing different versions of their appli-

cations. For example, a typical mobile software developer

often releases his/her applications on all the popular mo-

bile platforms, such as Android, iOS, and Windows, which

often involves rewriting applications in different languages.

For instance, Java is preferred language for implementing

Android applications and Objective-C for iOS application. In

context of desktop software, many well-known projects, such

as JUnit and Hibernate provide multiple versions in different

programming languages, to attract developer community to use

these libraries across those languages.

To assist developers with software migration there are exist-

ing language migration tools, such as Java2CSTranslator [8].

However, such tools require a programmer to manually input

how methods in a source language’s Application Programming

Interfaces (API) maps to the methods of the target language’s

API. Given a typical language (or platform) exposes a large

number of API methods for developers to reuse, manually

writing these mappings is prohibitively resource intensive and

may be error prone.

The goal of this research is to support software developers

in migrating an application from a source API to a target API

by automatically discovering likely method mappings across

APIs using text mining on the natural language API method

descriptions.

Existing approaches address the problem of finding method

mapping between APIs using static [25] and dynamic [5]

analysis. Recently Nguyen et al. [14] further proposed to

apply statistical language translation techniques to achieve

language migration by mining large corpora of open source

software repositories. However, these approaches require as

an input manually ported (or at least functionally similar)

software across source and target APIs. Since static analy-

sis and mining approaches [14], [25] leverage source code

analysis, accuracy of such approaches is dependent on the

quality of the code under consideration. Likewise, accuracy

of dynamic approaches [5] is dependent on the quality and

completeness of test inputs to dynamically execute the API

behavior comprehensively.

To address the shortcomings of existing program-analysis

based approaches, we propose to use the natural language

API method descriptions to discover the method mappings

across APIs. Our intuition is: since the API documents are

targeted towards developers, there may be an overlap in

the language used to describe similar concepts that can be

leveraged. In general, API documentation provides develop-

ers with useful information about class/interface hierarchies

within the software. Additionally, API documents also provide

information about how to use a particular method within a

class by means of method descriptions. A method description

typically outlines specifications in terms of the expectations of

the method arguments and functionality of method in general.

This paper presents TMAP: An approach that leverages

the natural language method descriptions to discover the

likely method mapping between APIs. TMAP stands for

Text Mining based approach to discover likely API method

mappings. In particular, TMAP proposes to create a vector

space model [12], [19] of the target API method descriptions.

TMAP then queries the vector space model of target API

using automatically generated queries from the source API

method descriptions. TMAP automates the query generation

in source API using the concepts from text mining, such as

emphasizing (or omitting) certain keywords over others and

querying multiple facets (such as class description, package

names, and method description). Since TMAP analyzes API

documents in natural language, the proposed approach is

reusable, independent of the programming language of the

library.

We pose the following research question: How accurately

can the similarity in the language of API method descriptions

be leveraged to discover likely API Mappings? To answer our

question, we apply TMAP to discover likely API mappings

for 15 classes across: 1) Java and C# API; 2) Java ME 1

and Android API. We also compare the discovered mappings

with two state-of-the-art static and dynamic analysis based

approaches: Rosetta [5] and StaMiner [14].

This paper makes the following major contributions:

• A text mining based approach that effectively discovers

mapping between source and target API.

• A prototype implementation of our approach based on

extending the Apache Lucene [11]. An open source

implementation of our prototype can be found at our

website2.

• An evaluation of our approach on 5 classes in Java ME

to Android API and 10 Classes Java to C# API. The

evaluation results and artifacts are publicly available on

the project website.

The rest of the paper is organized as follows. Section II

presents the background on Text Mining. Section III presents

a real world example that motivates our approach. Section IV

presents TMAP approach. Section V presents evaluation of

TMAP. Section VI presents a brief discussion and future

work. Section VII discusses the related work. Finally, Sec-

tion VIII concludes the paper.

II. BACKGROUND

Text mining is a broad research area, including but not

limited to the techniques facilitating retrieval/manipulation of

useful information from a large corpus to text. As opposed

to traditional data mining, text mining analyzes free-form

text distributed across documents (rather than data localized

and maintained within a database). To analyze this data, text

mining uses concepts from traditional data analytics, natural

language processing, and data modeling. We next introduce the

concepts from text mining that have been used in the presented

approach.

Indexing [4], [12]: Indexing is the process of extracting

text data from source documents and storing them in well-

defined indexes. During the indexing process, a document (a

sequence of text) is divided into its constituent units, known

as tokens or terms, based on a well-defined criterion. A term

is typically an individually identifiable unit of the document

(such as a word) and relates to the individual terms stored in

an index. Once the terms within each document are identified,

1Java Platform Micro Edition
2https://sites.google.com/a/ncsu.edu/apisim/

they are added to the index, with the corresponding link to the

document and associated term frequencies. Term frequency is

the simple count of the occurrence of a term in a document.

An optional pre-processing step further assists with indexing,

such as removing stop-words.

Among various indexing strategies, the use of inverted file

indexing [4] is well suited for large document collections. In

the simplest form, an inverted file index provides a mapping

of terms, such as words, to its locations in a text document.

A document can be thought of as a collection of m terms.

Typically a document is made up of a sequence of n unique

terms such that n <= m. The number n is usually far less

than m as most of the terms are repeated while forming a

document. For instance, the term “the” is repeated many times

in this paper. The set of unique terms within an index forms the

“Term List” v of the index. If a pointer (say numeric location)

is associated with each term in v to the location of that term in

text document, the resultant data structure is a form of inverted

file index. As the document collection grows, the number of

documents matching a term in the index becomes sparser.

The index is oftentimes annotated with the information

regarding the frequency of occurrence of each term in the

document. The representation of a document as a vector of

frequencies of terms is referred to as vector space model [4],

[19].

TF-IDF [12]: Term -frequency inverse-document-frequency

(tf-idf) is a numerical statistic that is intended to capture the

importance of a term to a document in a corpus. Often used

as a weighting metric in information retrieval and text mining,

the tf-idf weight increases proportionally to frequency of

the occurrence of a term in a document; however, the weight

is also offset by the count of the number of documents that

contain the term.

Cosine Similarity [19]: In mathematics, Cosine similarity

is a numerical statistic to measure the similarity between

two vectors. Cosine similarity is defined as a dot product of

magnitude of two vectors. In the context of text mining, the

Cosine similarity is used to capture the similarity between two

documents represented as term frequency vectors.

III. EXAMPLE

We next present an example to motivate our work

and list the considerations for applying text mining tech-

niques on API documents. The example is from the

Java ME and the Android API. Both Java ME and An-

droid use Java as the language of implementation and

are targeted towards hand-held devices. Figure 1 shows

the API method description of drawString method from

javax.microedition.lcdui.Graphics class in Java ME

API. Figure 2 shows the API method description of method

drawText method from android.graphics.Canvas class

in Android API.

Notice the overlap in the language of these two methods.

A developer can easily conclude that the two methods offer

similar functionality. However, Android API has more than

23,000 public methods. Manually going through each method

javax.microedition.lcdui Class Graphics drawString
public void drawString(String str,int x,int

y,int anchor)

Draws the specified String using the current font and color.

The x,y position is the position of the anchor point. See anchor

points.

Parameters

str - the String to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws

NullPointerException - if str is null

IllegalArgumentException - if anchor is not a legal value

See Also

drawChars(char[], int, int, int, int, int)

Fig. 1. drawString API method description of Graphics class in the
Java ME API

android.graphics Class Canvas drawText
public void drawText (String text, float x,

float y, Paint paint)

Draw the text, with origin at (x,y), using the specified paint.

The origin is interpreted based on the Align setting in the paint.

Parameters

text - The text to be drawn

x - The x-coordinate of the origin of the text being drawn

y - The y-coordinate of the origin of the text being drawn

paint - The paint used for the text (e.g. color, size, style)

Fig. 2. drawText API method description of Canvas class in the
Android API

description to find similar methods is prohibitively time con-

suming, supporting the need for automation. A naive solution

to automate the task is to perform keyword-based search.

To demonstrate the difficulties faced by keyword-based

search in above example, we searched the Android API de-

scription with the keywords listed in Table I using the Apache

Lucene [11] framework. Lucene is a high-performance, full-

featured text search engine library written entirely in Java. The

column “Query” describes the keywords we used to perform

keyword-based search, The column “Hits” lists the number of

matches found, and The column “Top-10” lists the rank of the

first relevant method in top-ten results. For instance, when we

searched for the class name “Graphics” in the Android API, we

did not get any results. We also did not get any results for when

we searched for method name using keywords “drawString”.

When we searched the Android API using the words in the

method signature as keywords, we got a 23,547 results (almost

all methods in Android API). The high number of results

is because of the confounding effects of keywords, such as

“public”. Most of the methods signatures have the keyword

“public”. Although the ranking mechanisms in Lucene did

rearrange the results moving methods with most keyword

TABLE I
QUERY RESULTS

Query Hits Top-10

1 Class Name: “Graphics” 0 -
2 Method Name: “drawString” 0 -
3 Method Signature 23547 -
4 Method Description: (Complete) 16820 -
5 Method Description: (summary sentences) 94230 -
6 Combination 1479 3

‘-’=No Match in Top-10 results.

matches first, we did not find a relevant method in top-ten

results. Likewise, the words in method descriptions as a whole

or in parts also did not yield better results. In the example, a

combination of various attributes, such as method name split in

camel case notation “draw String”, keywords from both class

and method description resulted in the Android API equivalent

method drawText shown in Figure 2 in the top ten results.

The previous example demonstrates difficulties faced by

simple keyword-based searches and text mining in general

to discover likely method mappings. The TMAP approach

in general addresses the following difficulties in applying

text mining approaches on natural language API method

descriptions:

1) Confounding effects. Certain method names have a con-

founding effects. For instance, toString(), get(),

set() are too generic and tend to have similar descrip-

tions across different method definitions. These generic

methods often cause interference with the output of text

mining based approaches. The problem is to automati-

cally identify such method names to de-emphasize their

importance in a query.

2) Weights. Not all terms in a method descriptions are

equally important keywords. For instance, the term “zip”

in the sentence “opens a zip file” is more important than

the terms “opens” and “files” as the term emphasizes on

the specific type of file. The problem is to automatically

identify the importance of a term.

3) Structure. API documents are not flat contiguous text

blobs. They have well defined structure, that is often

shared by method descriptions. Ignoring the structure

may cause ineffective queries negatively affecting the

results. The problem is to effectively aggregate the

results of querying individual API document elements

(such as class description, class names, method names,

method descriptions).

IV. APPROACH

We next present our approach for discovering likely map-

pings of API methods across APIs. Figure 3 provides an

overview of the TMAP approach. The TMAP approach

consists of three major components: 1) an Indexer; 2) Query

Builder; and 3) Searcher components.

The Indexer accepts the API documents of the target API

and creates indexes (a vector space model) of these documents

by extracting intermediate contents from the method descrip-

tions. The Query Builder accepts the API documents of the

!"#$%&'()*'

+,-./%0&1'

2,.#-%'()*'

+,-./%0&1'

*03%4%#'

5.%#6'

7.893%#'

+,-./%0&'

:,3%9'

2%"#-;%#'

<"0=%3'

>81&'

)#%?#,-%11,#'

@1%#'

Fig. 3. Overview of TMAP approach

source API and creates queries to be executed on the indexes

(a vector space model). Finally, Searcher component executes

the queries on the indexes and generates a ranked list of the

API methods from target API documents as mapping results

to be presented to the developers for confirmation. We next

describe each component in detail.

A. Indexer

This component accepts the API method descriptions of the

target API and creates indexes (a vector space model) of these

documents. In particular, Indexer extracts the following fields

from the API method descriptions:

F1) Type Name: The name of enclosing class/interface of

the method. For the method description of drawString shown

in Figure 1, indexer extracts the type Name as “Graphics”.

F2) Package Name: The package name of the enclosing

type. For the method description shown in Figure 1, indexer

extracts the package name as “javax.microedition.lcdui”.

F3) Method Name: The name of the method. For the

method description shown in Figure 1, indexer extracts the

method name as “drawString”.

F4) Class Description: The description of enclosing type.

Class description is not shown in Figure 1 for the space

considerations.

F5) Method Description: The description of the method.

For the method description shown in Figure 1, indexer ex-

tracts the method description as all the text except method

declaration in Line 1.

This step is required to extract the desired descriptive

text from the API method descriptions. Getting structured

descriptions facilitates searching on individual categories. This

step allows TMAP to deal with the structure issue as presented

in Section III. Different API documents may have different

styles of presenting information to developers. Such stylistic

differences may also include the difference in the level of the

details presented to developers. TMAP relies only on basic

fields that are generally available for API methods across

different presentation styles.

After extracting the desired information, extracted text is

further preprocessed. The preprocessing steps are required to

make the text amenable to text mining techniques that are used

in the subsequent phases of the TMAP approach. In particular,

TMAP performs the following basic prepossessing steps:

P1) Presentation Elements: A typical API method de-

scription is often interleaved with presentation elements for

improved readability. For instance, JavaDoc provides a list

of identifiers such as @Code and @link. These identifiers

are automatically translated into presentation markup, such

as links and fonts. Although such elements are part of the

description text, these elements often cause noise in the

text mining techniques to compute relevance based on the

query. Therefore, this preprocessing step cleans the method

descriptions to remove such elements. We use a static list of

presentation elements to achieve cleaning in this step with

relatively high accuracy.

P2) Split Package Notation: In method descriptions, the

“.” character is used as a separator character for package

names like “javax.microedition.lcdui”. We use regular

expressions to split the package name into constituent words

to facilitate search on individual words in the package name.

For example, “javax.microedition.lcdui” is split into

“javax microedition lcdui”.

P3) Split CamelCase Notation: API method descriptions

are often interleaved with programming identifiers, such as

class names and method names. Oftentimes these identifiers

use CamelCase notation. The CamelCase notation is the de

facto mechanism used by programmers for combining phrases

into a single word, such that each word in the phrase begins

with a capital letter. Previous research [10] demonstrated the

benefit of splitting the CamelCase word into its constituent

phrase for automated code completion. TMAP splits such

identifiers into constituent phrases to better facilitate searching.

TMAP leverages the well-formed structure of CamelCase

notations to encode a regular expression to achieve splitting

with relatively high accuracy. For example, “drawString” is

split into “draw String”.

P4) Lowercase: This step involves converting the text

description to lower case. The step is performed to normalize

the text for making the keyword match case insensitive, further

increasing the range of queries.

P5) Stemming: This steps transforms the words in the

description to their base form. Stemming is very effective

in extending the range of keyword based queries to match

various operational forms of the words. For instance, “has”,

“have”, and “had” are mapped to the stem “ha”. We use the

default implementation of the Lucene Porter stemmer for pre-

processing.

After preprocessing, TMAP next creates indexes for the

API method descriptions. An index is collection of documents

where each document is made up of values organized into well

defined fields. TMAP considers every method description as

an individual document and uses the following major fields (as

previously described): 1) combination of package and class

name; 2) class description; 3) method signature; 4) method

name; and 5) method description. The values of these fields

are the text after preprocessing. TMAP uses a vector space

java.util Interface Iterator hasNext
boolean hasNext()

Returns true if the iteration has more elements. (In other

words, returns true if next() would return an element

rather than throwing an exception.)

Returns:

true if the iteration has more elements

Fig. 4. API Method Description of hasNext method in Iterator
Interface from Java API

Type Name: java util iter

Type Description: iter over collect iter take

enumer java collect framework

Method Name: ha next

Method Description: return true iter ha more

element other word return true next would

return element rather than throw except

Fig. 5. Query based on API method description of hasNext method in
Iterator Interface from Java API

model representation of the documents for each field. Vector

space model or term vector model is an algebraic model for

representing text documents (and any objects, in general) as

vectors of identifiers and their frequency of occurrence. In case

of TMAP, each word is considered as a term except the stop

words, such as “a”, “the”, and “and”.

B. Query Builder

This component accepts the API method descriptions of

the source API and creates queries for method descriptions.

These queries are executed on the target API index to re-

trieve an ordered list of relevant API methods. In particular,

Query Builder uses the same preprocessing steps followed

by Indexer (listed in Section IV-A). After extracting the

desired descriptive text from the API method descriptions, this

component systematically creates search queries to search for

different fields in Indexes. Keywords for searching in “Type

Name”, “Type Description”, “Method Name”, and “Method

Description” fields are derived from their equivalents in the

extracted descriptive text.

For instance, consider the method description shown in

Figure 4 and equivalent query in shown in Figure 5. The

Keywords for “Type Name” are derived from preprocessing

“java.util.Iterator” resulting in “java util iter”. Notice

the package notation is split into individual words and “Iter-

ator” is further transformed to lower case and its stem “iter”.

Likewise, keywords for field “Method Name” is derived by

preprocessing “hasNext”, which is first split into “has Next”

and then transformed using stemming into “ha next” (ha

being stem of word has).

For generating keywords to query the “Type Description”

field we consider following heuristic: Heuristic H1: the first

paragraph or the first five sentences of the type descrip-

tion (whichever is shorter) provides reasonable keywords for

searching equivalent class in target API.

Likewise, for generating the keywords to query the “Method

Description” field, we consider the following heuristic: Heuris-

tic H2: the first paragraph or the first two sentences of the

method description (whichever is shorter) provides reasonable

keywords for searching equivalent method in target API.

TMAP uses these heuristics to improve the performance of

searching infrastructure that tends to be inversely proportional

to the complexity and length of the query. Using all the de-

scriptive text as keywords often results in a verbose query. As

the number of keywords in a query increases the effectiveness

of the query decreases. A large number of keywords have

higher probability of matching large number of documents

in comparison to a query with fewer keywords. In contrast,

we observed that the document writers tend to describe the

general overview of class and method description in the first

few sentences followed by implementation and design specific

details. We thus focused on the words in these overview

sentences to create queries instead of using entire descriptive

text.

Weights for terms. As mentioned in Section III, all terms

in a method description are not equally important keywords.

TMAP further enhances the query by quantifying the impor-

tance of a term in the method description and use that as

the weight of the corresponding keywords in the query. In

particular, we propose to use tf-idf [12] as a means to quantify

importance of a term. For each term in the method description

TMAP calculates the number of times the term occurs in

that method description as freqmtd. TMAP also calculates

the maximum frequency of any term in the document as

freqMAX . TMAP then calculates the number of documents

in the corpus that contains the term as freqdoc. TMAP finally

calculates the tf-idf score of the term (as listed [12]) as:

tf-idf = (0.5 +
0.5 X freqmtd

freqMAX

) ∗ log(1 +
totalmtd

freqdoc
)

The calculated tf-idf values of terms are normalized to a

range of 0 to 1 (both 0 and 1 inclusive) for each document.

The normalized tf-idf sore of the top-k terms is then used as

the weights for the corresponding keywords occurring in the

query.

For the API method description shown in Figure 4, TMAP

calculates “iter”, “ha” (Lemma of “has”), and “element” as

most the important terms with normalized tf-idf scores of

1.0, 1.0, and 0,6 respectively. We augment the query shown

in Figure 5 with the computed weights for the keywords

respectively.

C. Searcher

The searcher component accepts the query from Query

Builder component and queries the index generated by Indexer

component. The results are then ranked and presented to the

end user for review. The searcher is realized as follows. First

all the documents that match the keywords and clauses in a

query are returned. Then, the returned documents are ranked

using the cosine similarity [19] of the terms in query and the

terms in returned documents. In mathematics, Cosine similar-

ity is a numerical statistic to measure the similarity between

two vectors. In information theory [12], cosine similarity is

the standard statistic to rank relevant documents.

D. Implementation

We implemented a prototype version of the TMAP ap-

proach. We first manually download the HTML version of

API documents of libraries. We then implemented a parser

for extracting the requisite text from these documents using

Jsoup3, which is a java library for working with HTML

documents. In particular our prototype implementation parses:

1) Oracle’s Javadoc style; 2) Android style documentation; and

3) Microsoft’s MSDN documentation.

We next implemented the indexing, query building, and

searching infrastructure using the Apache Lucene [11]. Lucene

is a high-performance, full-featured text search engine library

written entirely in Java. Our prototype implementation and

evaluation subjects are publicly available on the project web-

site4.

V. EVALUATION

We conducted an evaluation to assess the effectiveness of

TMAP. In our evaluation, we address following research

questions:

• RQ1: What is the effectiveness of TMAP in leveraging

the similarity in the language of API method descriptions

to discover likely API Mappings?

• RQ2: How do the mappings discovered by TMAP com-

pare with the mappings discovered by existing program-

analysis based approaches?

A. Subjects

We evaluated TMAP using a snapshot of the publicly

available API documents of Java, C#, Android, and Java ME

downloaded in January 2015.

Java Platform Micro Edition, or Java ME, is a Java platform

designed for embedded systems (such as mobile devices).

Target devices range from industrial controls to mobile phones

(especially feature phones) and set-top boxes. Android is a

linux-based operating system designed primarily for touch-

screen mobile devices, such as smartphones and tablet com-

puters.

Java and C# are general-purpose programming languages

from Oracle and Microsoft respectively. Java applications are

typically compiled to bytecode that run on any Java Virtual

Machine (JVM) irrespective of underlying computer architec-

ture. Likewise, C# is compiled into intermediate representation

that run on Microsoft’s common language infrastructure.

Particularly we used the API documents of the following

library pairs as subjects for our evaluation.

Java ME (to Android) API: For our evaluation we con-

sidered the methods in the following Java ME types as the

3http://jsoup.org/
4https://sites.google.com/a/ncsu.edu/apisim/

source API methods to discover mapping methods in Android

API: Alert, Canvas, Command, Graphics, and Font Classes

in javax.microedition.lcdui package.

The listed types provides methods for supporting graphics

related functionality in Java ME. Furthermore, Rosetta ap-

proach by Gokhale et al. [5] reports the mapping for methods

in these types along with seven others (twelve types in total)

as a part of their evaluation, thus allowing a comparison with

dynamic-analysis based approaches. Rosetta approach requires

a user to manually execute functionally similar applications

using source and target API with identical (or near identical)

inputs and collect execution traces. Finally Rosetta analyses

the collected execution traces to infer method mappings. We

focused our evaluation on the listed five types which first three

authors perceived as frequently used types among the twelve

types reported by Rosetta. In the future, we plan to evaluate

TMAP approach on all the twelve reported types.

Java (to C#) API: For our evaluation we considered the

methods in the following Java types as the source API

methods to discover mapping methods in C# API: 1) File,

Reader, and Writer in java.io package; 2) Calendar,

Iterator, HashMap, and ArrayList in java.util pack-

age; and 3) Connection, ResultSet, and Statement

classes in java.sql package.

The types in java.io provide the API methods for ac-

cessing and manipulating the file system. Types in java.util

provide API methods for miscellaneous utilities, such as text

manipulation, collections frameworks and other data struc-

tures. Types in java.sql provide the API methods for access-

ing and processing data stored in databases. We selected these

particular packages in Java programming languages because

Nguyen et al. [14] in their work (StaMiner) for statistical

language migration find mappings for the types in these

packages. Their mapping results allow comparison of TMAP

with static-analysis based approach. Although, Nguyen et

al. [14] report on all the classes in these packages, due to

the amount of effort, we focused our analysis on the listed

types which first three authors perceived as frequently used

types in their respective packages.

B. Evaluation Setup

We first downloaded the publicly available API documents

from the respective websites of the subject APIs. We then

cleaned and extracted the desired fields as described in the

Section IV-A. We then indexed the extracted text into the

Lucene indexes. We created a separate index for every API

type: Java ME, Android, Java, and C#.

For every type (class/interface) under consideration (as

listed in Section V-A), we extracted the publicly listed methods

from API documents. For a given type, we only consider the

methods that are listed in the public API. We only consider

the methods explicitly declared or overridden by a type and

ignore the inherited methods. We then use TMAP to create

the queries form the descriptions of the considered methods as

described in Section IV-B. Finally, we execute the formulated

queries on the index and collect results We only consider top-

10 results for each query. Previous approaches [1], [5] also

only consider the top-10 results suggested by their approach

for evaluation.

The top-10 matches found by the TMAP are then ana-

lyzed/reviewed manually to determine the effectiveness of the

matched results. For a given method in the source API, a match

is characterized by a class and a method within that class that

is determined to be the corresponding implementation in the

target API. Authors next annotated each match as ‘relevant’

and/or ‘exact’ based on the following acceptance criteria:

1) Relevant: If the target method in the top-10 list can be

used to implement the same (or similar) functionality as

the source method, we classify the result as relevant.

OR

The target method is reported by the previous ap-

proaches [5], [14] as a mapping.

2) Exact: If the target method is a relevant method and

the target method accurately captures the functional-

ity of the source method, and implements the same

feature/function, the resultant match is classified as an

‘exact’ match.

OR

The target method is reported by the previous ap-

proaches [5], [14] as a mapping.

For example, getInt method in java.sql.ResultSet

type has an exact match in the C# method GetInt32 from

system.data.sqlclient.SqlDataReader type, since

both methods provide the same functionality of extracting the

32-bit signed integer value stored in a specified column. In

contrast, getClob method in java.sql.ResultSet type

does not have an exact corresponding method in C#. The

closest functionality available is the C# method GetValues

in system.data.sqlclient.SqlDataReader type. Thus

the method GetValues is marked as relevant, but not an

exact match.

We then calculate coverage (Cov) as the ratio of the

number of methods in a type that TMAP found at-least one

relevant mapping to the total number of source methods in

that type. We also calculate the ∆Cov as increase in the Cov
in comparison to results reported by previous approaches [5],

[14] as : ∆Cov = TMAPcov−Prevcov. High value of ∆Cov

indicates the effectiveness of TMAP in finding API method

mappings. Finally we measure the common methods between

the exact mappings suggested by TMAP for a source method

with the mappings suggested by previous approaches. We then

calculate, the number of new mappings a the number of exact

mappings sans the common mappings.

C. Results

We next describe our evaluation results to demonstrate the

effectiveness of TMAP in leveraging natural language API

descriptions to discover method mappings across APIs.

1) RQ1: Effectiveness of TMAP : Table II presents our

evaluation results for answering RQ1. The columns ‘API’ lists

the name of source API under ‘Source’ and target API under

‘Target’. The column ‘Type’ lists the class or interface in

source API under consideration for finding mappings in target

API. The column ‘No. Methods’ lists the number of methods

in the class or interface under consideration. The columns

‘Relevant’ lists the number of methods for which at least one

relevant mapping is reported. The sub-column ‘Prev.’ reports

relevancy numbers by previous approaches. The previous

approach for comparison of Java ME-Android mappings is

Rosetta [5]. The previous approach for comparison of Java-C#

mappings is StaMiner [14]. The sub-column ‘TMAP’ reports

relevancy numbers by TMAP (at least one relevant method

in top-ten results). The column ‘Exact’ lists the number of

methods for which a exact mapping is found. The sub-column

‘Prev.’ reports exact numbers by previous approaches. Since

previous approaches do not make a distinction between exact

and relevant, we report same values for both columns. The

sub-columns ‘TMAP’ reports exact numbers by TMAP (at

least one exact method mapping in top-ten results). Column

‘∆Cov’ lists the ratio of increase in the number of methods for

which a relevant mapping was found by TMAP to the total

number of methods in the type.

Our evaluation results indicate the TMAP on average

finds relevant mappings for 57% (Column ‘∆Cov’) more

methods. For the Java ME-Android mappings TMAP per-

forms best for Alert and Font classes from javax.

microedition.lcdui package in Java ME API with 75%

increase in number of methods for which a relevant mapping

was found in Android API. For the Java-C# mappings TMAP

performs best for Iterator interface from java.util pack-

age in Java API finding a relevant method in C# API

for all the methods. Previous approach StaMiner reports a

manually constructed wrapper type as a mappings instead.

Furthermore, our results also indicate that TMAP found on

average exact mappings for 6.5 ((171−73)/15) more methods

per type with a maximum of 21 additional exact mappings

for a java.sql.ResultSet type as compared to previous

approaches. We next describe the cases where TMAP did not

find any relevant mapping.

A major cause for inadequate performance of TMAP is

lack of one-to-one mapping between methods in source and

target API. Often times functionality of a method in a source

API is broken down into multiple functions in the target API

or vice versa. Although, TMAP reports some of the relevant

methods, exact mapping may involve a sequence of method

calls in target API which is the limitation of TMAP. In the

future, we plan to investigate techniques to deal with such

cases.

Another cause of inadequate performance of TMAP is

inconsistent use of terminology across different APIs. For

instance, TMAP did not find any additional relevant mapping

for methods in Command class in Java ME API. In Java ME

API, ‘command’ is used to refer the user interface construct

‘button’. In Android API, ‘command’ is used in more conven-

tional sense of the term. This inconsistent use of terminology

causes TMAP to return irrelevant results. When we manually

replaced the term ‘command’ with ‘button’ in the generated

TABLE II
EVALUATION RESULTS

API No. Relevant Exact
S No. Source Target Type Methods Prev TMAP Prev TMAP ∆Cov Common New

1 Java ME Android javax.microedition.lcdui.Alert 16 3 15 3 7 0.75 0 7
2 Java ME Android javax.microedition.lcdui.Canvas 22 5 18 5 10 0.60 0 10
3 Java ME Android javax.microedition.lcdui.Command 6 3 3 3 0 0.00 0 0
4 Java ME Android javax.microedition.lcdui.Graphics 39 18 36 18 29 0.47 5 24
5 Java ME Android javax.microedition.lcdui.Font 16 3 15 3 8 0.75 0 8

6 Java C# java.io.File 54 15 37 15 26 0.41 7 19
7 Java C# java.io.Reader 10 1 8 1 6 0.70 1 5
8 Java C# java.io.Writer 10 2 10 2 10 0.80 1 9

9 Java C# java.util.Calendar∗ 47 0 11 0 5 0.24 0 5
10 Java C# java.util.Iterator∗ 3 0 3 0 1 1.00 0 1
11 Java C# java.util.HashMap 17 5 9 5 5 0.24 1 4
12 Java C# java.util.ArrayList 28 6 22 6 15 0.58 4 11

13 Java C# java.sql.Connection 52 1 28 1 13 0.52 1 12
14 Java C# java.sql.ResultSet 187 10 146 10 31 0.73 1 30
15 Java C# java.sql.Statement 42 1 21 1 5 0.48 1 4

Total 549 73 382 73 171 0.57∗∗ 22 149
∗=Previous approach reported a manually constructed class as mapping; ∗∗=Average

Prev= previous approach; Previous approach for Java ME-Android mappings is Rosetta [5]; Previous approach for Java-C# mappings is StaMiner [14]

queries, we observed a relevant method appeared in top ten

results for every method in the Command class in Java ME

API. However, we refrain from including such modifications

to stay true to TMAP approach for evaluation. In the future,

we plan to investigate techniques to automatically suggest

alternate keywords.

2) RQ2: Quality of discovered mappings: To answer RQ2,

we compared the exact mappings discovered by TMAP with

the mappings discovered by previous approaches. In Table II

the previous approach for comparison of the Java ME-Android

mappings is Rosetta [5] and the previous approach for com-

parison of Java-C# mappings is StaMiner [14]. Our results

show that out of 171 discovered exact mappings only 22 are

in common with previous approaches. We next discuss some

of the implications of the results.

Before carrying out this evaluation, we expected that the

mappings discovered by TMAP would significantly overlap

with the mappings discovered by the Rosetta and StaMiner,

as these approaches infer mappings from actual source code.

Thus, these mappings can be considered as the representative

of how developers are actually migrating software. However,

the results suggest a low overlap. We manually investigated

the possible TMAP specific implications of the observed

mismatch.

The results (matches found) comprise of methods from

different classes in the target API, reflecting that often there are

multiple ways to solve a problem, or to implement a feature

using an API. Further, choice of using multiple APIs gives

a developer the flexibility to use different approaches when

porting an application from one platform to another.

When more than one match is found for a given source

method, the results in TMAP are ranked according to the

similarity score, with the more relevant (or exact matches)

ranked higher. The ranked set of results helps the developer

use the best suited or most appropriate target method in

their implementation. This approach is different from earlier

approaches [5], [14] that focused on only exact matches

between different classes using the number of similar methods

as a basis.

We also contacted the authors of Rosetta approach [5]

to report the difference in the mappings. Specifically, we

inquired that Rosetta does not report any method form

AlertDialog class in the Android API as a possible mapping

for Alert.setString method in Java ME API. Rosetta re-

ports method sequence Paint.setAlpha CompundButton.

setChecked as one of the likely mappings. In contrast,

TMAP discovers AlertDialog.setTitle method in An-

droid API as a likely mapping.

The lead author of Rosetta approach responded that they

restricted the output of Rosetta to sequences of length up to 2

when inferring mappings (i.e., A→p;q, or A→p). Furthermore,

authors count a reported method sequence as a valid mapping

if the reported sequence implements some of the functionality

of a source method on the target platform. With regards to our

query, Rosetta authors observed that in many of the traces,

setting a string first involves setting the attributes of the

Paint (with is used to draw the text), followed by a call to

setText method, which led them to believe that the sequence

Paint.setAlpha CompundButton. setChecked could be

a likely mapping, if at least in part. Although, author did

confirm that technically AlertDialog.setTitle method in

Android API as a likely mapping.

The exchange with Rosetta approach’s lead author points

out that the mappings discovered by TMAP generally point to

the closest aggregate API in contrast to the individual smaller

API calls that achieve the same functionality. Furthermore, the

exchange also demonstrates the reliance of the code analysis

approaches on the quality of the code under analysis. In

contrast, TMAP relies on the quality of the API method

descriptions.

VI. LIMITATION AND FUTURE WORK

We next describe the limitations and future work of TMAP,

followed by discussions on threats to validity.

A key limitation of the presented work is its reliance on

the human developer to confirm or refute mappings. In the

future, we plan to extend the TMAP infrastructure to achieve

an end-to-end automation. Particularly, we plan on using the

program-analysis techniques, such as type-analysis proposed

in existing approaches [14], [26].

Sometimes the functionality achieved by a method call in

a source API, is achieved by a sequence of method calls in

the destination API and vice versa. Although TMAP may

return individual methods as relevant, TMAP does not provide

explicit sequences of method calls as relevant suggestions. In

the future, we plan to extend the current text mining infras-

tructure to provide method sequences as relevant suggestions

when applicable. In particular, we plan to leverage the NLP

techniques, such as specification inference [16] to identify

method sequences.

From an implementation perspective, TMAP does not take

into account the API fields, which limits TMAPs ability in

reporting mappings involving API fields. However, disregard-

ing API fields is a limitation of the current implementation

and in future iterations of TMAP implementations we plan to

include API fields in the indexes as well.

Finally, TMAP operates under the assumption of the avail-

ability of the API documents. Thus TMAP is not applicable

in situations where API documents are of low quality or are

unavailable altogether. In the future, we plan to extend TMAP

infrastructure to workaround such situations by integrating

with existing source-code-mining based approaches. Specif-

ically we plan to leverage techniques like code summarisa-

tion [20] and IR based approaches like Exoa [9].

Threats to Validity: The primary threat to external validity

is the representativeness of our experimental subjects to the

real world software. To address this threat we chose real world

API pairs: 1) Java ME and Android APIs are two Java based

platforms to develop mobile applications; 2) Java and C# APIs

are the top object-oriented programming language APIs used

for generic application development. The threat can be further

minimized by evaluating TMAP on more APIs from different

domains.

Our chief threat to internal validity is the accuracy of

TMAP in identifying API mappings. To minimize this threat

we compared the mappings inferred by TMAP with the

mappings provided by previous approaches. We thank Gokhale

et al. [5] for sharing with us the Java ME and Android

API mappings inferred by their Rosetta approach. We also

thank Nguyen et al. [14] for making their mappings publicly

available. Furthermore, authors did manually identify some of

the mappings that could not be compared to previous work.

Thus, human errors may affect our results. To minimize the

effect, each annotation was independently agreed upon by two

authors.

VII. RELATED WORK

Language migration is an active area of research [5], [7],

[13], [14], [22], [23], [25], with myriad techniques that have

been proposed over time to achieve automation. However,

most of these approaches focus on syntactical and structural

differences across languages. For instance, Deursen et al. [22]

proposed an approach to automatically infer objects in legacy

code to effectively deal with differences between object-

oriented and procedural languages. However, El-Ramly et

al. [3] suggest that most of these approaches support only a

subset of API’s for migration. A recently published survey by

Robillard et al. [18] provides a detailed overview of techniques

dealing with mining API mappings.

Among other works described in [18], Mining API Map-

ping across different languages [25] (MAM) is most directly

related to our work. MAM takes into input a software (S)

written in source language and manually ported version of

S (S′) written in target language. MAM then applies a

technique called “method alignment” that pairs the methods

with similar functionality across S and S′. These methods are

then statically analyzed to detect mappings between source and

target language API. Recently, Nguyen et al. [14], [15] pro-

posed StaMiner, an approach that applies statistical-machine-

translation based techniques to achieve language migration.

They consider source code as a sequence of lexical tokens (lex-

emes) and apply a phrase-based statistical-machine-translation

model on the lexemes of those tokens to achieve migration.

While MAM and StaMiner require as input software that has

been manually ported from a source to target API (both S
and S′), our approach is independent of such requirement. In

contrast, TMAP relies on text mining of source and target API

method descriptions (that are typically publicly available) to

discover likely mappings.

Gokhle et al.’s [5] approach Rosetta addresses the lim-

itations of MAM to infer method mappings. In particular,

Rosetta relaxes the constraint of having software that has

been manually ported from a source to target API. Instead,

they use functionally similar software in source and target

API. For instance, they use two different ‘tic-tac-toe’ game

applications in Java ME and Android API not necessarily man-

ually ported. Rosetta approach then requires user to manually

execute these applications under identical (or near identical)

inputs and collect execution traces. Finally Rosetta analyses

the collected execution traces to infer method mappings. In

contrast, TMAP is independent of both the requirements: 1) to

have functionally similar applications, 2) to manually execute

such applications using similar inputs.

Furthermore, from an infrastructure perspective, TMAP

is independent of the programming language or API under

consideration. In contrast, program analysis based approaches

like [5], [14], [25] may need significant efforts for adding

support to additional APIs and programming language.

Zheng et al. [24] mine search results of a web search

engine, such as Google to recommend related APIs of different

libraries. In particular, they propose heuristics to formulate

keywords using the name of the source API, and the name

of target API to query a web search engine. For instance,

to search for an equivalent class in C# for the HashMap

class in Java, a user may manually enter “HashMap C#” in

a web search engine. The results are computed one by one

and candidates are ranked by relevance, mainly according to

their frequency of the appearance of keywords in the query.

However, authors provides only preliminary results and queries

proposed are of a coarse grain. Furthermore, the results are

susceptible to influence by the webpages returned by a web

search engine. In contrast, TMAP is independent of the web

search engine results.

Information retrieval techniques [1], [6], [9], [17] are also

being increasingly used in Code Search. We next describe

some relevant approaches. Chatterjee et al.’s [1] approach Sniff

annotates the source code with API document descriptions.

Sniff then performs additional type analysis on the source code

to rank relevant code snippets. Grechanik et al.’s [6] approach

Exemplar uses the text in API documents to construct a set of

keywords associated with an API call. Exemplar then uses

the keywords list to facilitate query expansion to achieve

code search. However, these approaches are targeted towards

code search in one API. In contrast, TMAP discovers method

mappings across multiple APIs.

Text analysis [2], [10], [16], [26], [27] of API documen-

tation is increasing being used to infer interesting properties

from software engineering perspective. For instance, Zhong

et al. [26] employ natural language processing (NLP) and

machine learning (ML) techniques to infer resource specifi-

cations (rules governing the usage of resources) from API

documents. Treude et al. [21] also leverage rule-based NLP

approaches to infer action (programming actions described in

documentation) oriented properties from an API document. In

contrast, TMAP uses text mining a comparatively lightweight-

approach instead of sophisticated NLP techniques used in

these approaches. Furthermore, TMAP discovers API map-

ping relations across different API for language migration,

whereas the previous approaches mine properties of one API.

VIII. CONCLUSION

API mapping across different platforms/languages mappings

facilitate machine-based migration of an application from one

API to another. Thus tool assisted discovery of such mappings

is highly desirable. In this paper, we presented TMAP: a

lightweight text-mining based approach to infer API mappings.

TMAP compliments existing mapping inference techniques

by leveraging natural language descriptions in API documents

instead of relying on source code. We used TMAP approach

to discover API mappings for 15 types across: 1) Java and

C# API, 2) Java ME and Android API. We demonstrated

the effectiveness of TMAP by comparing the discovered

mappings with state-of-the-art code analysis based approaches.

Our results indicate that TMAP on average found relevant

mappings for 57% more methods compared to previous ap-

proaches. Furthermore, our results also indicate that TMAP

found on average exact mappings for 6.5 more methods per

type with a maximum of 21 additional exact mappings for a

single type as compared to previous approaches.

ACKNOWLEDGMENT

This work is funded by the USA National Security Agency

(NSA) Science of Security Lablet. Any opinions expressed in

this report are those of the author(s) and do not necessarily

reflect the views of the NSA. We also thank the Realsearch

research group for providing helpful feedback on this work.

REFERENCES

[1] S. Chatterjee, S. Juvekar, and K. Sen. Sniff: A search engine for java
using free-form queries. In Proc. of 12th FASE, pages 385–400. 2009.

[2] U. Dekel and J. D. Herbsleb. Improving API Documentation Usability
with Knowledge Pushing. In Proc. 31st ICSE, pages 320–330, 2009.

[3] M. El-Ramly, R. Eltayeb, and H. Alla. An experiment in automatic
conversion of legacy Java programs to C#. In Proc. IEEE CSA, pages
1037–1045, 2006.

[4] W. Frakes. Introduction to information storage and retrieval systems.
Space, 14:10, 1992.

[5] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring likely
mappings between APIs. In Proc. 35nd ICSE, 2013.

[6] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby. A search engine for finding highly relevant applications.
In Proc. 32nd ICSE, volume 1, pages 475–484, 2010.

[7] A. E. Hassan and R. C. Holt. A lightweight approach for migrating web
frameworks. Inf. Softw. Technol., 47(8):521–532, Jun 2005.

[8] Java 2 CSharp Translator for Eclipse. http://sourceforge.net/projects/
j2cstranslator/.

[9] J. Kim, S. Lee, S.-w. Hwang, and S. Kim. Towards an intelligent code
search engine. In Proc. AAAI, 2010.

[10] G. Little and R. C. Miller. Keyword programming in Java. In Proc.
22nd ASE, pages 84–93, 2007.

[11] Apache Lucene Core. http://lucene.apache.org/core/.
[12] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to informa-

tion retrieval, volume 1. Cambridge University Press, 2008.
[13] M. Mossienko. Automated Cobol to Java recycling. In Proc. 7th CSMR,

pages 40–, 2003.
[14] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical

learning approach for mining API usage mappings for code migration.
In Proc. 29th ASE, pages 457–468, 2014.

[15] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Migrating code
with statistical machine translation. In Companion Proceedings of the
36th International Conference on Software Engineering, pages 544–547.
ACM, 2014.

[16] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
Inferring method specifications from natural language API descriptions.
In Proc. 34th ICSE, 2012.

[17] S. P. Reiss. Semantics-based code search. In Proc. 31st ICSE, pages
243–253, 2009.

[18] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Trans. on Software

Engineering, 39(5):613–637, 2013.
[19] A. Singhal. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35–43, 2001.
[20] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Generating parameter

comments and integrating with method summaries. In Proc. of 19th
ICPC, pages 71–80, 2011.

[21] C. Treude, M. Robillard, and B. Dagenais. Extracting development tasks
to navigate software documentation.

[22] A. Van Deursen and T. Kuipers. Identifying objects using cluster and
concept analysis. In Proc. 21st ICSE, pages 246–255, 1999.

[23] R. C. Waters. Program translation via abstraction and reimplementation.
IEEE Trans. on Software Engineering, 14(8):1207–1228, 1988.

[24] W. Zheng, Q. Zhang, and M. Lyu. Cross-library API recommendation
using web search engines. In Proc. 13th ESEC/FSE, pages 480–483,
2011.

[25] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proc. 32nd ICSE, pages 195–
204, 2010.

[26] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifi-
cations from natural language API documentation. In Proc. 24th ASE,
pages 307–318, 2009.

[27] H. Zhou, F. Chen, and H. Yang. Developing Application Specific
Ontology for Program Comprehension by Combining Domain Ontology

with Code Ontology. In Proc. 8th QSIC, pages 225 –234, 2008.

