
Enabling Forensics by Proposing Heuristics to Identify
Mandatory Log Events

Jason King, Rahul Pandita, and Laurie Williams
Department of Computer Science

North Carolina State University
Raleigh, NC, USA

{jtking, rpandit, laurie_williams}@ncsu.edu

ABSTRACT
Software engineers often implement logging mechanisms to
debug software and diagnose faults. As modern software manages
increasingly sensitive data, logging mechanisms also need to
capture detailed traces of user activity to enable forensics and hold
users accountable. Existing techniques for identifying what events
to log are often subjective and produce inconsistent results. The
objective of this study is to help software engineers strengthen
forensic-ability and user accountability by 1) systematically
identifying mandatory log events through processing of
unconstrained natural language software artifacts; and 2)
proposing empirically-derived heuristics to help determine
whether an event must be logged. We systematically extract each
verb and object being acted upon from natural language software
artifacts for three open-source software systems. We extract 3,513
verb-object pairs from 2,128 total sentences studied. Two raters
classify each verb-object pair as either a mandatory log event or
not. Through grounded theory analysis of discussions to resolve
disagreements between the two raters, we develop 12 heuristics to
help determine whether a verb-object pair describes an action that
must be logged. Our heuristics help resolve 882 (96%) of 919
disagreements between the two raters. In addition, our results
demonstrate that the proposed heuristics facilitate classification of
3,372 (96%) of 3,513 extracted verb-object pairs as either
mandatory log events or not.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
reliability, validation.

General Terms
Measurement, Documentation, Design, Reliability, Security,
Standardization, Verification.

Keywords
logging, accountability, security, nonrepudiation, forensics,
natural language, software requirements.

1. INTRODUCTION
In the past, software engineers have implemented logging
mechanisms to debug software, diagnose faults, and monitor
network performance [1]. As modern software manages an
increasing amount of sensitive data, software engineers also need
to implement logging mechanisms that capture detailed traces of
user activity to help provide a means of forensic analysis after a
security or privacy breach occurred. Logging mechanisms also
help mitigate repudiation threats, threats associated with users
who deny performing some action within the software system
without other parties having any way to prove otherwise [2].

Yuan et al. [1] characterize logging practices for debugging and
fault detection in open-source software systems. The researchers
suggest that logging is often reactive and performed as an after-
thought when an anomalous condition or breach has already
occurred. The current state of logging mechanisms for
nonrepudiation is similar. For example, a 2011 Veriphyr Survey
of Patient Privacy Breaches [3] in the healthcare industry claims
that 52% of survey participants indicated that their organization
did not have adequate tools for monitoring inappropriate access to
protected health information.

A naïve reaction to address the problem of inadequate logging
mechanisms involves logging “everything”. However, to
comprehensively evaluate logging mechanisms, software
engineers must first identify the set of “everything” to be logged.
Logging “everything” often introduces resource and performance
[4] issues. Furthermore, excessive logging also tends to clutter the
audit trail for forensic analysis and hinder a system administrator's
ability to detect anomalous conditions [5].

Although specifications exist for stating how to implement
logging mechanisms for user accountability [6] [7] [8], no
rigorous specification or systematic process exists to guide
software engineers in determining what user activity must be
logged. For example, consider the sentence from the Open
Conference System user guide:

If you wish to begin creating new accounts immediately however
(to begin assigning roles such as Track Directors), you can
proceed by selecting the Create New User link.

Software engineers must first mentally process the natural-
language structure of the sentence to identify each action
described, and then determine which of the identified actions must
be logged. In the example, “wish to begin”, “creating new
accounts”, “assigning roles”, “proceed”, and “selecting the Create
New User link” all describe actions that users may perform in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HotSoS’15, April 21–22, 2015, Urbana, Illinois, USA.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

software, but how should a team of software engineers
consistently and systematically determine whether each action
must be logged or not?

The objective of this study is to help software engineers strengthen
forensic-ability and user accountability by 1) systematically
identifying mandatory log events through processing of
unconstrained natural language software artifacts; and 2)
proposing empirically-derived heuristics to help determine
whether an event must be logged. For this work, we define a
mandatory log event as an action that must be logged to hold the
software user accountable for performing the action.

We study unconstrained natural language software artifacts for
three open-source software systems:

• iHRIS: Open Source Human Resources Information
Solutions1 v4.2

• iTrust: Open Source Electronic Health Record System2 v18

• OCS: Open Source Scholarly Conference Management
System3 v2.3.6

We then manually identify all pairs of verbs and objects acted
upon from the software artifacts studied. Next, the first two
authors individually classify each verb-object pair as being a
mandatory log event or not (for the purpose of holding users
accountable in the software system). Based on observations and
discussions of the authors’ disagreements of whether a verb-object
pair must be logged, we develop a set of heuristics to help other
software engineers identify mandatory log events in a given
software system.

For this study, we define the following research questions:

• RQ1: How often do descriptions of mandatory log events
appear in natural language software artifacts?

• RQ2: What similarities and differences exist in the grammar
and vocabulary used in different software artifacts?

• RQ3: What factors help decide whether an action must be
logged?

In addition, this research contributes the following:

• A set of empirically-derived heuristics to assist software
engineers in determining whether a given user action
described in a software artifact must be logged.

• A set of considerations for requirements engineers to help
clearly and unambiguously document mandatory log events
in software artifacts.

• An oracle of mandatory log event classifications for three
open-source software systems. The oracle is publically
available on the project website4.

The remainder of this paper is organized as follows: Section 2
discusses related research. Section 3 presents our methodology.
Section 4 presents our results. Section 5 provides a discussion of
our findings to answer our research questions. Section 6 presents

1 http://www.ihris.org/
2 http://agile.csc.ncsu.edu/iTrust
3 https://pkp.sfu.ca/ocs/
4 http://go.ncsu.edu/NLPLogging

our proposed heuristics. Section 7 discusses proposed
considerations for authors of natural-language software artifacts.
Section 8 discusses the threats to validity. Section 9 discusses
limitations of our work and future work. Finally, Section 10
summarizes and concludes our work.

2. RELATED WORK
Software engineers have historically used software logging
mechanisms for many different purposes. Yuan et al. [1] proposed
an automated approach to improve fault diagnostic capabilities
through logs. In particular, LogEnhancer[9] automatically
suggests which variable values need to be recorded in each
existing log message. Furthermore, Fu et al. [10] characterize
industrial practices surrounding the use of logs and logging.
However, all of these proposed approaches target the fault
diagnostic capabilities of logging. In contrast, our work seeks to
advance logging as a security mechanism to help mitigate
repudiation threats and promote user accountability.

In terms of user accountability, Vance et al. [11] discuss the
importance of identifiability, the belief that one’s actions within a
group can be associated with him or her individually as they
become immersed in a collective group. When individuals sense
that they are distinguishable within a group, certain behaviors tend
to be curtailed. The researchers highlight the concept of
evaluation, in which a person’s performance is assessed by
another party according to a set of rules with implied
consequences. The researchers perform a factorial survey of 96
information systems students to investigate whether the awareness
of logging of user behavior influenced a person’s behavior. The
researchers suggest auditing increases a user’s desire to engage in
“approved” actions, thus decreasing intention to violate an access
policy. In our work, we identify all mandatory log events
described by a set of unconstrained natural-language software
artifacts. By identifying the set of mandatory log events, software
engineers may better design, implement, and test logging
mechanisms to ensure adequate traces of user activity is captured
to increase awareness of logging and to mitigate inappropriate
user behavior in the software system.

Yskout et al. [12] discuss an approach for transforming security
requirements for logging mechanisms into an architectural model
using Unified Modeling Language (UML) to aid developers in
designing and implementing logging mechanisms. However, their
approach is limited to the modeling of explicit logging
requirements, such as “The starting and stopping of the ATM
machine needs to be audited.” In contrast, our work seeks to
identify mandatory log events explicitly-stated or implied by
existing functional requirements. For example, the sentence
“Doctors may edit previously-created prescriptions” describes two
mandatory log events: (1) <edit, prescription>, which involves the
explicitly-stated verb “edit”; and (2) <create, prescription>, which
involves the implied action “create” since “create” is expressed as
an adjective instead of a verb.

In previous work [13], we performed: 1) a general auditable event
evaluation; and 2) a specific auditable event evaluation of three
open-source electronic health record (EHR) systems. For
example, “view” is a general auditable event that does not specify
which data resource is being viewed. Specific auditable events
detail exactly which data resource is being acted upon, such as
“view allergy data”, “view medication data”, and “view
demographics data”. The specific auditable event evaluation
provided a much finer-grained, more meaningful evaluation of
logging mechanisms since “view allergy data”, “view medication

data”, and “view demographics data” were treated as three
separate mandatory log events, compared to just “view data”. The
three open-source EHR systems studied logged an average of
12.6% of general auditable events in the study, compared to only
7.4% of specific auditable events. Overall, with such a lack of
logged events, general auditable events provided by guidelines for
logging mechanisms were deemed inadequate to ensure logging
mechanisms capture useful traces of user activity. The current
work incorporates the specific data resources being acted upon
into the set of verb-object pairs.

In 2013, we compiled a catalog of suggested events that should be
logged [6]. For the catalog, we collected three types of
guidelines/specifications: 1) data transactions that should be
logged, 2) security events that should be logged, and 3) data fields
that should be captured for each log entry. From the 16 source
documents in our catalog, we identified 11 data transactions, 77
security events, and 22 data fields for log entry content5. To
discover 100% of the items in the catalog, a software developer
would need to consider 13 out of the 16 source documents. No
single source document of guidelines for mandatory log events
exists to provide a comprehensive overview of what a software
engineer should log. Therefore, for our current work, we present a
methodology for identifying mandatory log events based on
natural-language artifacts specific to the individual software
system.

Another closely related area is the application of natural language
processing techniques on software artifacts. Existing approaches
[14] [15] [16] [17] [18] leverage natural language text in various
software artifacts for software testing and quality assurance
related tasks. The most closely related work [15] proposes an
automated process to infer access control policies from
unconstrained natural language requirements documents. Access
control policies center around who is allowed or prevented access
to perform an action in the system. For our study, we are only
concerned with identifying what actions may be performed. As a
result, we employ basic manual natural language processing and
lemmatization when extracting verbs and objects, compared with
more advanced natural language processing and machine learning
approaches used in related work [15].

Riaz et al. [19] empirically derived templates for documenting
explicit security requirements for software systems using existing
natural-language software artifacts. For accountability-related
security requirements, any natural language sentence that
contained a subject acting upon a system resource implied the
need for the software to log each time the subject performs the
action on the resource. In this work, we further leverage natural
language software artifacts, specifically requirements
specifications and user guides, to identify user activity that can be
performed in a software system.

3. METHODOLOGY
Our methodology consists of five key activities: 1) selecting
software and associated software artifacts to use in the study; 2)
preprocessing natural-language software artifacts; 3) extracting
verb-object pairs from the software artifacts; 4) classifying the
verb-object pairs as mandatory log events or not; and 5)
comparing and reconciling differing annotations. In this section,

5 The full catalog can be found at

http://go.ncsu.edu/loggingcatalog

we describe the methodology, and in Section 4 we share the
results of applying this methodology.

3.1 Step One: Selecting Software & Software
Artifacts
We use the following inclusion criteria when selecting candidate
software to use for this study:

a) The software developers must maintain a software
requirements specification document.
OR
The software’s development community must maintain a
user guide.

b) The software codebase must be readily available to
install and deploy locally for planned follow-up studies.

Since we focus on logging for nonrepudiation and accountability,
we need to identify the set of user activity possible in a software
system. We used natural-language requirements specifications or
user guides as the software artifacts for this study because: 1) they
are readily available to software engineers; and 2) these
documents typically are the primary resources that describe
actions a user can perform in a software system. In the future, we
plan to study additional types of natural-language software
artifacts, as well.

For each candidate software application, we manually browse the
software’s website to locate applicable natural-language software
artifacts. If no natural-language software artifacts are found, we
contact the software’s development community to find any
natural-language software artifact that may be available. The
inclusion criteria for selecting software artifacts to use in the
study:

a) The artifact must be written in unconstrained natural
language in English.

b) The artifact must describe a set of actions that users may
perform in either: 1) the entire software application; or 2)
at least one complete module of functionality within the
software application.

Since we want to identify a complete (or near complete) set of
mandatory log events for software in this study, we do not
consider software artifacts that are incomplete or describe only a
subset of possible user activity for a given module of functionality
in the system.

3.2 Step Two: Preprocessing of Natural-
Language Software Artifacts
After selecting the natural-language software artifacts for our
study, we process the artifacts to make them amenable for use.
We first convert the original natural-language software artifact
documents into plaintext format to remove any non-natural
language components like graphics, visuals, and embedded
syntax. Converting to plaintext format also facilitates easier
processing of the text that appears in tables.

We next separate each sentence (typically delimited by a period
followed by at least one whitespace or carriage-return ‘↵’) in the
document by manually opening the file in a text editor and
splitting paragraphs so that individual sentences are contained on
separate lines. After separating each sentence, we list the
extracted sentences on individual rows in a newly-created
spreadsheet. We then proceed with the next activity in our
methodology: extracting verb-object pairs.

3.3 Step Three: Extracting Verb-Object Pairs
In this study, we consider each verb and the object being acted
upon as a basic description of an action. In grammar, verbs are the
fundamental constructs that express an action being executed
against an entity (indicated by an object). We express a verb-
object pair as a tuple of the form <verb, object>. For each verb
identified, we lemmatize the term to obtain the base form, or
lemma, of the verb. To extract verb-object pairs, we consider the
following guidelines for each sentence:

• Explicitly stated verb-object pairs. Extract any verbs
contained in the sentence, then identify any objects being
acted upon by the verb

o Example 1: “Doctors prescribe medications.”
! verb-object pair: <prescribe, medication>

• Implied verb-object pairs. Extract any words in the
sentence whose lemma is a verbal (e.g., gerunds, participles,
and infinitives are verbals that function as nouns in a
sentence), then identify any objects being acted upon by the
verbal

o Example 2: “Creating a patient…”
! verb-object pair: <create, patient>

o Example 3: “The submitted proposal…”
! verb-object pair: <submit, proposal>

• Compound verb-object pairs. For any sentence that
contains compound verbs or more than one object for a
single verb, we document multiple verb-object pairs to
consider each individual combination of verb and object:

o Example 4: “Doctors prescribe and update
medications”

! verb-object pair: <prescribe, medication>
! verb-object pair: <update, medication>

Each software artifact sentence contains zero or more documented
verb-object pairs. We document each verb-object pair in the
spreadsheet created in Section 3.2 on separate rows beneath the
original, unchanged source sentence.

3.4 Step Four: Classifying Verb-Object Pairs
For each software artifact, the first two authors individually
classify each verb-object pair as being a mandatory log event or
not based on their personal experience and knowledge of logging
mechanisms for holding users accountable for their actions in
software system. The first author has assisted with teaching of
software engineering related courses to undergraduate computer
science students since 2009. The second author has over two-and-
a-half years of industrial software development experience. To
avoid introducing bias into our classifications, and to prevent
over-restricting our classifications and potentially overlooking
relevant verb-object pairs, we use only the following general
guideline for our classifications:

A mandatory log event is an action that must be logged in order to
hold the software user accountable for performing the action.

For this study, we do not discriminate between actions performed
upon general data, sensitive data, or protected data. The set of
“sensitive” or “protected” data varies from one domain to another
and between the opinions of different individuals. This study
identifies a full set of user activity performed upon any data in the
system. User activities performed on sensitive or protected data
(see Section 9 for more details on future work) would be a subset

of the user activity identified using our current methodology and
should be identified using expert knowledge within a given
software system’s domain.

We create two copies of our spreadsheet containing the
documented verb-object pairs from Section 3.3. Each of the first
two authors receives a copy of the spreadsheet and classifies each
verb-object pair by annotating mandatory log event (Y) or not (N)
beside each verb-object pair in the spreadsheet.

3.5 Step Five: Comparing and Reconciling
Classifications
After performing individual classifications, we compile each
spreadsheet with individual classifications into a single
spreadsheet for comparison. For each disagreement in our
classifications, the first two authors meet to discuss and justify
their decisions. We document key points discussed when
resolving our discrepancies. When disagreements cannot be
resolved between the first two authors, the third author breaks the
tie and resolves the disagreement. We document the final
classification for each verb-object pair, as well as all
disagreements and resolutions.

4. RESULTS
We first discuss the software and related software artifacts
selected for our study. Next, we discuss the verb-object pairs
extracted from each source artifact. We then present the results of
our classification of the verb-object pairs.

4.1 Software & Software Artifacts Studied
For our study, we select three open-source software applications
from different domains:

• iHRIS: Open Source Human Resources Information
Solutions v4.2. According to the iHRIS community, 15
countries are using the software, with more than 675,000
health worker records currently supported in iHRIS.

• iTrust: Open Source Electronic Health Record System
v18. An electronic health record (EHR) system developed
and maintained by undergraduate software engineering
students at North Carolina State University and used by
many researchers and educators as a test-bed [20].

• OCS (Open Conference Systems): Open Source Scholarly
Conference Management System v2.3.6. A conference
management system developed and maintained by the Public
Knowledge Project (PKP), a multi-university initiative
developing free open-source software and conducting
research to improve quality of scholarly publishing.

We collect the following three software artifacts, one for each of
the selected software applications, which describe actions users
may perform in the software:

• iHRIS: Content Management System traditional software
requirements specification [21] for the Page Builder module.

• iTrust: Use-case based software requirements specification
[22].

• OCS: “OCS in an Hour” booklet user guide [23] (We could
not locate a requirements specification for this system, so we
consider the user guide as a form of requirements
specification [24]).

We collect a total of 2,128 sentences from the three artifacts: 36
from iHRIS traditional requirements, 1,301 from iTrust use-case
based requirements, and 791 from the OCS user guide.

4.2 Extracted Verb-Object Pairs
The iTrust use-case based requirements specification contained
the most verb-object pairs (1,928), followed by the OCS user
guide (1,479), then the iHRIS traditional requirements
specification (106). Table 5 includes a summary of the extracted
verb-object pairs from our three software artifacts.

Table 1 summarizes the verbs that appeared the most in each
software artifact. The most commonly occurring verb in the
iHRIS traditional requirements specification is “allow”. For the
iTrust use-case based requirements specification and the OCS user
guide, the most commonly occurring verb is “is”, indicating that
the artifacts frequently discuss system states (“A patient is a
registered user”) or often use passive voice (“A prescription is
created by a doctor”) when describing user activity.
In summary, the top five verbs appearing in the iHRIS traditional
requirements are also the top five mandatory log event verbs. For
the iTrust use-case based requirements specification, both
mandatory log event verbs “view” and “enter” appear in the set of
most commonly used verbs in the entire document. For the OCS
user guide, both mandatory log event verbs “add” and “allow”
appear in the set of most commonly used verbs in the entire
document. The verb “select” also appears commonly in both the
iTrust use-case based requirements and the OCS user guide.
Though many verbs frequently appear throughout the natural
language text, many of the most commonly used verbs in the use-
case based requirements specification and user guide are not
loggable and may clutter or hinder a software engineer’s ability to
filter through the text to identify mandatory log events.

4.3 Classification Results
We documented the disagreements between the first two authors
during the classification phase using the Cohen’s Kappa
coefficient (κ). In statistics, κ is the measure of inter-rater
agreement. A larger κ coefficient is considered an indicator of
higher inter-rater agreement [25]. Table 2, Table 3, and Table 4
present the confusion matrices of the initial classifications by the
first two authors, before resolving disagreements and conferring
with the third author. Section 5.3 provides insight into the
differences in inter-rater agreement across the three systems.

Table 5 also summarizes the final results of our classification,
after resolving disagreements and conferring with the third author.
An average of 1.7 verb-object pairs are extracted per sentence. Of
the verb-object pairs in each sentence, an average of 0.9 verb-

object pairs are mandatory log events. Overall, 1,263 out of 2,128
(59%) sentences contain at least one verb-object pair that is a
mandatory log event. Likewise, 2,060 out of 3,513 (59%) total
verb-object pairs describe mandatory log events.

5. DISCUSSION
In this section, we discuss RQ1 and RQ2 and differences in the
types of artifacts selected in the study. We also share observations
about the top five most common verbs from Table 1, and about
differences in inter-rater agreement between the first two authors.

5.1 Frequency of Mandatory Log Event Verb-
Object Pairs
RQ1: How often do descriptions of mandatory log events appear
in natural language software artifacts?

Table 1: Summary of top 5 verbs (all verbs vs. mandatory log event verbs)

Software Artifact All Verbs Mandatory Log Event Verbs Only
Verb Frequency Verb Frequency

iHRIS traditional requirements

allow 42 allow 42
edit 16 edit 16
save 13 save 13
display 8 display 8
add 5 add 5

iTrust use-case based requirements

is 217 view 120
view 120 enter 71
choose 89 display 52
select 81 authenticate 48
enter 71 edit 38

OCS user guide

is 137 add 51
use 64 create 47
add 53 allow 45
select 54 submit 35
allow 52 log in 28

Table 2: Confusion matrix for iTrust classifications

 Author 1

Author 2

 Log Not Log Total
Log 788 148 936

Not Log 615 377 992
Total 1403 525 1928
Cohen’s Kappa κ=0.22

Table 3: Confusion matrix for iHRIS classifications

 Author 1

Author 2

 Log Not Log Total
Log 86 0 86

Not Log 10 10 20
Total 96 10 106
Cohen’s Kappa κ=0.62

Table 4: Confusion matrix for OCS classifications

 Author 1

Author 2

 Log Not Log Total
Log 659 70 729

Not Log 76 674 750
Total 735 744 1479
Cohen’s Kappa κ=0.80

From Table 5, for iHRIS, each of the 36 total sentences contains
on average 2.9 verb-object pairs. For the iHRIS traditional
requirements specification, 75% of the total sentences in the
requirements specification contain at least one mandatory log
event.
From Table 5, for iTrust, each of the 1,301 total sentences
contains on average 1.5 verb-object pairs. For the iTrust use-case

based requirements specification, 62% of sentences contain at
least one mandatory log event.

From Table 5, for OCS, each of the 791 total sentences contains
on average 1.9 verb-object pairs. For the OCS user guide, 55% of
sentences contain at least one mandatory log event.

Natural language requirements specifications and user guides can
be valuable sources for inferring mandatory log events. In each of
the three studied software systems, over half of all sentences
contain at least one mandatory log event. On average, 59% of the
full set of 2,128 sentences contains at least one mandatory log
event verb-object pair, indicating that mandatory log events are
frequently described in natural language software artifacts.

5.2 Comparing and Contrasting Software
Artifacts
RQ2: What similarities and differences exist in the grammar and
vocabulary used in different software artifacts?

We observe several differences among the three artifacts in this
study. Even though both the iHRIS and iTrust artifacts are
requirements specifications, the two artifacts employ two different
styles of written requirements. iHRIS employs more traditional
software requirements, very similar to those defined by IEEE-830
[26]. The traditional IEEE style suggests that requirements
engineers write requirements from the perspective of the system
and focus on what the software system should be able to
accomplish. Traditional requirements appear in the format “The
system shall…” The iTrust requirements specification, however,
employs a use-case based style [27]. With use cases, requirements
should be written from the perspective of the user (not the system)
and focus on a user’s goals to perform specified actions within the
software application.

Therefore, we expected the top five verbs in the entire iTrust
artifact (see Table 1) to be similar to the top five mandatory log
event verbs in the entire iTrust artifact, since the use-case based
descriptions focus on actions the user should be able to perform in
the software application. However, the iTrust use-case based
requirements specification frequently uses non-loggable verbs
when stating the software requirements, even though use-case
based requirements typically focus on user actions. Instead, the
top five mandatory log event verbs in the iHRIS traditional
requirements are the exact same top five verbs that appear in the
entire iHRIS artifact. One possible explanation of such similarity

could involve the controlled nature of the traditional requirements
style in the iHRIS artifact.

For instance, each of the 36 sentences in the iHRIS artifact
follows the form “The system shall <action>…”, so the
requirements are somewhat restricted to mainly verbs that relate
to what the system should do. Natural language verbs such as “is”,
“choose”, and “ignore” do not strictly relate to what the system
can do, so they did not appear in the traditional-style iHRIS
requirements. Instead, the traditional-style requirements in iHRIS
consistently describe user actions in the form of “The system shall
allow the user to <action>…”, which provides a consistent
pattern for documenting actions that users can perform in the
software application. In use-case based requirements, however,
we did not observe any consistent patterns or constraints on how
requirements are grammatically stated.

In use-case based requirements, sentences are allowed to freely
follow any grammatical structure and pick from a larger variety of
verbs, since use-cases are not constrained to describing only what
the system shall do. The iTrust use-case based requirements often
state preconditions or describe “states” of the system, in addition
to specific user actions. For example, “A patient is a registered
user of the iTrust Medical Records system.” In this sentence, the
verb “is” describes a state of the system, but does not describe any
action performed by a user.

The OCS artifact represents a user guide, not a software
requirements specification. However, research suggesteds
considering user guides (or user manuals) as requirements
specifications [24] since the guides describe actions users should
be able to perform in the software application, and, therefore,
describe what the system should be able to do. In our study, the
most commonly appearing verb in both the OCS user guide and
the iTrust use-case based requirements specification was “is”,
which suggests the OCS user guide also describes states or
properties of the system (“OCS is designed to be a multilingual
system”).

Grammar and vocabulary may affect the ability of software
engineers to consistently identify mandatory log events. The
somewhat constrained nature of traditional-style requirements
specifications may make identifying mandatory log event verb-
object pairs more straightforward since the requirements are
limited to using verbs that describe what the system shall do or
what the system shall allow users to do.

5.3 Differences in Inter-rater Reliability.
For this study, we compute the Cohen’s Kappa metric [25] for
inter-rater reliability between the first two authors when
classifying verb-object pairs as mandatory log events or not. For
iTrust classifications, κ=0.22. For iHRIS classifications, κ=0.62.
For OCS classifications, κ=0.80. The iTrust requirements
specification was the first artifact examined and discussed, so

Table 5: Summary of extracted verb-object pairs

Software Artifact Number of
sentences

Number of
verb-object
pairs

Number of
mandatory
log event
verb-object
pairs

Average
verb-object
pairs per
sentence

Average
mandatory
log events
per sentence

Sentences
that contain
at least one
mandatory
log event

iHRIS traditional requirements 36 106 96 (91%) 2.9 2.6 27 (75%)
iTrust use-case based requirements 1301 1928 1217 (63%) 1.5 0.8 802 (62%)
OCS user guide 791 1479 747 (51%) 1.9 0.9 434 (55%)
Total 2128 3513 2060 (59%) 1.7 0.9 1263 (59%)

inter-rater reliability was fairly low (κ=0.22), compared with
inter-rater reliability in the iHRIS and OCS artifacts. Once we met
to resolve disagreements for iTrust, the justifications discussed
between the first two authors likely influenced classifications in
the second artifact examined, the iHRIS traditional requirements
specification.
As a result, inter-rater reliability for the iHRIS requirements
specification increased to κ=0.62. In addition, the iHRIS
requirements specification is a much shorter document (36 total
sentences, compared to 1,301 sentences with the iTrust artifact)
and uses consistent grammatical structure and terminology
throughout, unlike the iTrust artifact. For example, the majority of
sentences in the iHRIS requirements specification follow the form
of “The system shall allow users to <action>…” or “The system
shall <action>…”. Similarly, inter-rater reliability increased for
the OCS user guide to κ=0.80. Discussions about disagreements in
the iTrust and iHRIS classifications likely influenced
classifications in the OCS artifact.

In summary, our results suggest that logging is very subjective,
indicated by a low κ for iTrust classifications (κ =0.22) where no
previous discussions occurred between the two raters about what
must be logged or why it must be logged. However, discussion of
disagreements in annotations helped develop mental guidelines
for what is a mandatory log event, and agreement improved on
subsequent classifications. We formulated a set of heuristics to
help codify our informal mental guidelines to determine whether
an action is a mandatory log event or not (Section 6).

6. HEURISTICS FOR DETERMINING
MANDATORY LOG EVENTS
RQ3: What factors help decide whether an action is a mandatory
log event?

We use grounded theory analysis to empirically derive a set of
twelve heuristics to help other software engineers determine
whether a verb-object pair must be logged or not. Our analysis
involved the documented discussions between the raters to resolve
disagreements in classifications.

6.1 CRUD Actions

 The most straightforward heuristic involves recording CRUD
actions (create, read, update, delete), which are suggested in many
academic, regulatory, and professional guidelines and
specifications for implementing logging mechanisms [6]. The
three software artifacts contain a total of 134 verb-object pairs that
explicitly use the CRUD terminology.

The unconstrained natural language used (specifically in use-case
based requirements and user guides) may not easily map to the
core CRUD actions. For example, “designate” appears in the
iTrust use-case based requirements and OCS user guide. In these
cases, we attempt to mentally rephrase the action using a core
CRUD action. For example, “A patient designates a patient
representative” can be mentally rephrased as “create a patient
representative in the patient’s list of patient representatives”.
Mentally rephrasing the action into a core CRUD action helps us

determine that “designate” should be a mandatory log event.
However, mental rephrasing must be carefully considered so that
the meaning of the action does not change and that the rephrased
action still falls within the scope of the software and intended
functionality. In this study, the three software artifacts contain a
total of 1,243 verb-object pairs that describe actions that can be
mentally rephrased in terms of CRUD operations.

6.2 Read/View Actions

In prior work [6, 13, 28], we discuss the importance of recording
whenever a user views data, especially in a software system that
manages sensitive data [3]. The majority of classification
disagreements between the first two authors involve actions that
suggest reading or viewing of information. Specifically, the
unconstrained natural language use-case based iTrust
requirements and the OCS user guide use inconsistent
terminology to describe “views” of data. For example, the iTrust
requirements specification often states “view”, “display”,
“present”, “provide”, “read”, “see”, “show”, “list”, “analyze”, and
“appear” interchangeably when describing the core action of a
user accessing and viewing sensitive data in the system. The first
two authors discussed differences between user-centric actions
(“The user views immunizations for a patient”), system-centric
actions (“The system lists immunizations for a patient”), and data-
centric actions (“Immunizations for a patient appear”). After
conferring with the third author, we determine that regardless of
whether the action is user-centric, system-centric, or data-centric,
if the data is displayed in the interface or printed and is therefore
capable of being read, the action should be logged. In the three
software artifacts in this study, a total of 397 verb-object pairs
describe read-related actions.

6.3 Actions that Express Intent

Another primary source of disagreement between the first two
authors involved actions such as “choose to create”, “select to
delete”, “plan to remove”, and “wish to send”. The primary user
action in “choose to create” involves creating data. Likewise, the
primary user action in “select to delete” involves deleting data.
The only mandatory log event verb-object pair for “choose to
create an allergy” is <create, allergy>. The user cannot explicitly
“choose” or “select” or “plan” or “wish” in the system, so these
actions that express intent are not mandatory log events. In the
three software artifacts in this study, a total of 351 verb-object
pairs contain verbs that express intent and are not mandatory log
events.

6.4 Actions that Express Permissions

In “allow doctors to edit immunizations”, the edit action is
classified as a mandatory log event. However, the term “allow”
suggests the use of an access control security mechanism in the
software system. In this example, and based on prior research on
security events that should be logged [6], we consider “allow”

Heuristic H1: If the verb involves creating, reading, updating,
or deleting resource data in the software system, then the
event must be logged.

Heuristic H2: If the verb can be accurately rephrased in
terms of creating, reading, updating, or deleting resource
data in the software system, then the event must be logged.

Heuristic H3: If the verb implies the system displaying or
printing resource data that is capable of being viewed in the
user interface or on paper, then the event must be logged.

Heuristic H4: If the verb expresses the intent to perform an
action, such as “choose to”, “select to”, “plan to”, or “wish
to”, then the intent event is not a mandatory log event.

Heuristic H5: If the verb expresses the granting or revocation
of access privileges in the software system, then the event
must be logged.

equivalent to “grant a user privilege” in an access control
mechanism in the software. Granting or revoking a user privilege
is a direct action the user may perform in the software. The two
mandatory log event verb-object pairs for “allow doctors to edit
immunizations” are: <allow to edit, immunizations> and <edit,
immunizations>. In this study, a total of 126 verb-object pairs
describe permissions that should be granted or prevented.

6.5 Context-critical Actions

Some verbs may describe either mandatory log events or non-
loggable events depending upon context. For example, “The
conference organizer provides a schedule for a conference”
suggests the act of creating a conference schedule in the software.
However, the term “provide” can also describe a mandatory log
event read/view action (such as “The system provides a list of
medications”), as well as a non-loggable event (such as “The list
of immunizations provides a means for doctors to view a patient’s
vaccination history”). Similarly, a doctor could “order lab
procedures to be performed” (mandatory log event), or lab
procedures could be “ordered alphabetically in a list” (not
loggable). Context is critical in ambiguous cases where terms can
potentially imply either a mandatory log event or a non-loggable
event. In this study, we identify a total of 158 verb-object pairs
that contain ambiguous verbs and require consideration of context
to determine if the event must be logged.

Context is also important in cases where actions described are
external or out of the scope of the software system. For example,
the OCS user guide describes creating a PayPal business account.
Since registering for a PayPal account happens outside the scope
of the software system, the verb-object pair <create, PayPal
account> is not loggable. We identify 314 verb-object pairs in this
study that describe actions outside the scope of the software
systems.

6.6 User Session Events

Throughout both the iTrust use-case based requirements
specification and the OCS user guide, 94 total verb-object pairs
described the need for users to authenticate into or log-out of the
software system. An additional 6 verb-object pairs described the
need for the user session to timeout or terminate after a set amount
of time for security reasons. Any action that involves the creation
or termination of a user session must be logged.

6.7 Verbs that Describe States or Qualities,
Not Events

From Table I, the most commonly occurring verb in both iTrust
use-case based requirements specification and the OCS user guide
is “is”. In the study, 253 total verb-object pairs describe states, not
actions, in the software. For example, “A list of immunizations is
available”, or “A patient is a registered user of iTrust”. A

description of system states or qualities does not imply any user
activity within the system and should not be logged.

6.8 Possession and Composition

In the study, 57 total verb-object pairs describe possession of a
resource or quality. For example, “The patient has a known
interaction with a medication”, “The patients have dependents”,
and “The row contains the doctor’s comments”. In these cases,
neither <has, known interaction>, <has, dependent>, nor <contain,
comments> is loggable.

6.9 Interface Actions

The iTrust use-case based requirements specification and OCS
user guide contain a total of 65 verb-object pairs that involve
navigation. For example, “The doctor remains on the office visit
page”, or “You can return to your account to see the progress of
your submission”. Similarly, both software artifacts contain a total
of 161 verb-object pairs that describe mechanical interaction with
the software interface. For example, “The doctor types the
patient’s name”, and “The author needs to click on Active
Submissions”. In these cases, neither <type, patient name> nor
<click, Active Submissions> is loggable since they do not
describe what action the user is performing within the software.
Instead, these verb-object pairs only describe how the user is
interacting with the interface.

6.10 System Initialization and Configuration

Only the OCS user guide described security events in which an
administrative user initializes the software, upgrades the software,
or installs new components. The OCS user guide contains a total
of 8 verb-object pairs that describe system initialization and
configuration. For example, “The Site Administrator can install
additional locales as they become available”. In this sentence, the
verb-object pair <install, locales> is a mandatory log event since it
involves the administrative user configuring the system, which
could potentially modify certain functionality or resources in the
system.

6.11 Summary of Heuristics
Our heuristics facilitate classification of 3,372 (96%) out of 3,513
total verb-object pairs extracted from the three natural language
software artifacts in this study as mandatory log events or not.
Figure 1 presents a chart showing the increase in coverage of
verb-object pairs as each heuristic is considered. H2 covers 1,243
(35%) of total verb-object pairs, which makes H2 the most
applicable heuristic in our study. H3 covers an additional 397
(11%) of total verb-resource pairs. H4 covers an additional 351
(10%) of total verb-resource pairs. Overall, if a software engineer
considered the set of {H2, H3, H4, H7, H9, H11, and H6},
roughly 84% of the total verb-object pairs would be covered. If a
software engineer considers all 12 heuristics, 3,372 (96%) of the

Heuristic H6: If the verb is ambiguous, such as “provide” or
“order”, context must be considered when determining if the
event must be logged.

Heuristic H7: If the verb describes an action that takes place
outside the scope of the functionality of the software, then the
event is not a mandatory log event.

Heuristic H8: If the verb involves the creation or termination
of a user session, then the event must be logged.

Heuristic H9: If the verb describes a state or quality within
the system, then the event is not a mandatory log event.

Heuristic H10: If the verb describes possession or
composition of a resource or quality, then the event is not a
mandatory log event.

Heuristic H11: If the verb describes navigation or mechanical
interaction with the software interface, then the event is not a
mandatory log event.

Heuristic H12: If the verb describes initialization of the
software or configuration of the software, then the event must
be logged.

total verb-object pairs would be covered. As a result, 141 (4%)
verb-object pairs do not fit under any of the proposed 12
heuristics. We do not observe any obvious patterns or
consistencies among these 141 verb-object pairs to help justify
additional reusable heuristics.

7. CONSIDERATIONS FOR AUTHORS OF
NATURAL-LANGUAGE SOFTWARE
ARTIFACTS
 In this study, many classification disagreements between the first
two authors resulted from ambiguous and inconsistent use of
terminology in the iTrust use-case based requirements
specification and the OCS user guide. We propose a set of
considerations to mitigate confusion and ambiguity to help
software engineers who must perform natural language processing
from software artifacts.

Use Consistent Terminology. In this study, we classified each of
the following terms as a read/view action: “view”, “display”,
“present”, “provide”, “read”, “see”, “show”, “list”, “analyze”, and
“appear”. The first two authors frequently disagreed on whether
verb-object pairs that contained an ambiguous verb like “provide”
should be logged or not. Does the term “provide” describe the act
of creating data, or does the term describe the act of displaying
data so that the data can be viewed? However, if the author of the
artifact consistently uses the same term to describe a given action,
many disagreements can be potentially avoided. Likewise,
consistent terms would help reduce the number of verb-object
pairs that are incorrectly classified as non-loggable because of
ambiguity or confusion.

Use Consistent Perspective. In this study, we observed that core
“read” actions were often described from three different
perspectives within the same software artifact: (1) the user
perspective (the user views | reads | sees | analyzes), (2) the system
perspective (the system displays | presents | provides | shows |
lists), and (3) the data perspective (the data appears). Using a
consistent perspective when describing functionality of the
software system helps constrain the terminology used, which
helps reduce confusion and ambiguity when identifying
mandatory log event verb-object pairs.

Use CRUD Terminology. In this study, we observed several
terms that did not easily map to the basic create, read, update,
delete actions identified in prior work [6]. For example, “manage”

appeared in both the iTrust use-case based requirements
specification and the OCS user guide. The term “manage” is
ambiguous and could potentially mean either or all of create, read,
update, or delete. Similarly, we observed the terms “make”,
“indicate”, and “blog” in the OCS user guide. When describing
actions that users may perform, authors should use CRUD
terminology to mitigate ambiguity and explicitly describe the
exact interactions with resource data. For example, use “create”
instead of “make”, use “edit” or “add” (as appropriate) instead of
“indicate”, and “create a blog entry” instead of “blog”. Otherwise,
the reader may incorrectly infer the intended action and
incorrectly classify the action as non-loggable.

8. THREATS TO VALIDITY
Threats to external validity include the degree of
representativeness of our studied software artifacts to real-world
software artifacts. We address this threat by using real-world
software artifacts for three open-source software systems. Another
threat to external validity involves the possibility of over-fitting
our heuristics to artifacts of a specific domain. To address this
threat, we include natural-language software artifacts from three
different domains: human resources management, healthcare, and
scholarly conference management. Our methodology considers
verbs and objects for identifying user activity, rather than relying
on domain-specific terminology. Therefore, our methodology
allows any natural language artifact that describes actions that
users can perform in a software system to be considered,
regardless of domain.

Threats to internal validity include the correctness of our
extraction of verb-object pairs. We minimize this threat by having
each rater validate and correct the list of verb-object pairs before
annotating the pairs. An additional threat to internal validity
includes the correctness of our annotations of mandatory log event
verb-object pairs. We minimize the threat by designing the
experiment such that two authors annotate each verb-object pair.
In cases where two authors could not resolve disagreements, the
third author broke the tie producing a majority vote. Furthermore,
results of our annotations are publicly available on our project
website.

9. FUTURE WORK
In the future, we plan to conduct additional studies on natural
language artifacts from other domains. We also plan to

Figure 1. Coverage of verb-object pairs by heuristics, sorted in increasing order by largest number of verb-object pairs covered.

Heuristic 2 covers the most verb-object pairs (35%); Heuristic 2 and Heuristic 3, together, cover approximately 47% of verb-
object pairs; Heuristics 2-4, together, cover approximately 57% of verb-object pairs, etc. Overall, our 12 heuristics cover about

96% of the verb-object pairs in this study.

0%	
20%	
40%	
60%	
80%	
100%	

H2	 H3	 H4	 H7	 H9	 H11	 H6	 H1	 H5	 H8	 H10	 H12	

Pe
rc
en
ta
ge
	 o
f	 v
er
b-‐

ob
je
ct
	 p
ai
rs
	 c
ov
er
ed
	

Heuristic,	 sorted	 in	 increasing	 order	 by	 contributed	 coverage	

Coverage	 of	 Verb-‐Object	 pairs	

incorporate additional types of natural-language software artifacts
that describe user activity, such as feature requests, to further
minimize threats to validity. Two additional avenues for future
work include prioritization of mandatory log events and
automation of our heuristics.

Some software engineers propose that logging mechanisms log
“everything” as a naïve solution. However, to comprehensively
evaluate a logging mechanism, software engineers must first
identify the set of “everything” that should be logged. Based on
our methodology, our set of mandatory log events is limited to
verb-object pairs explicitly-stated or implied within natural
language software artifacts. However, software engineers may
wish to further limit or prioritize the set of mandatory log events
to only actions that involve user interactions with a predefined set
of sensitive or protected data. Since the definition and set of
“sensitive” and “protected” data varies among domains, expert
knowledge must be incorporated into the process for identifying
mandatory log events. Future work on identifying domain-specific
sets of sensitive data could help further refine our current
methodology to produce a more prioritized and concise set of
mandatory log events for which users should be held accountable.

The results of the current study also demonstrate the effectiveness
of simple heuristics to determine what user activity should be
logged. In the future, we plan to conduct user studies to further
evaluate the effectiveness of the proposed heuristics in assisting
developers with logging decisions. We also plan to automate the
task of inferring mandatory log events from natural language
software artifacts and conduct experiments and user studies to
evaluate the effectiveness of automating the heuristics to identify
mandatory log events.

10. CONCLUSION
Software logging has been a prevalent practice in production
systems for decades. In addition to being valuable for software
debugging and fault diagnosis, logging mechanisms can help
mitigate repudiation threats and enable forensics after a security
or privacy breach occurs. Research suggests logging is often
subjective and arbitrary in practice [1]. Although specifications
exist to suggest how to implement logging mechanisms for user
accountability [6] [7] [8], no rigorous specification or systematic
process exists to guide software engineers in determining what
user activity should be logged for nonrepudiation. This work
describes a systematic methodology to assist software engineers in
identifying user activity that should be logged by: 1) extracting
verb-object pairs from unconstrained natural-language software
artifacts; and 2) proposing a set of 12 heuristics to identify verb-
object pairs that describe mandatory log events. In addition, our
heuristics facilitate classification of 3,372 (96%) of all verb-object
pairs extracted from natural language software artifacts. Our
results demonstrate that our 12 empirically-derived heuristics may
help when identifying mandatory log events implied within
unconstrained natural language software artifacts.

11. ACKNOWLEDGMENT
This work is supported by the USA National Security Agency
(NSA) Science of Security Lablet. Any opinions expressed in this
report are those of the author(s) and do not necessarily reflect the
views of the NSA. We thank Patrick Francis for assisting with
identification of verb-object pairs for iTrust. We also thank the
Realsearch research group for providing helpful feedback on this
work.

12. REFERENCES
[1] D. Yuan, S. Park, and Y. Zhou, "Characterizing logging

practices in open-source software," in Proceedings of the
34th International Conference on Software Engineering,
Zurich, Switzerland, 2012.

[2] H. Shawn, L. Scott, O. Tomasz, and S. Adam. (2006).
Uncover Security Design Flaws Using the STRIDE
Approach. Available: http://msdn.microsoft.com/en-
us/magazine/cc163519.aspx

[3] (August 2011). 2011 Survey of Patient Privacy Breaches.
Available:
http://www.veriphyr.com/landing/HIPAA_violation_survey/

[4] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y.
Zhou, and S. Savage, "Be conservative: enhancing failure
diagnosis with proactive logging," in Proceedings of the 10th
USENIX conference on Operating Systems Design and
Implementation, Hollywood, CA, USA, 2012.

[5] (2013). CWE-779: Logging of Excessive Data. Available:
http://cwe.mitre.org/data/definitions/779.html

[6] J. King and L. Williams, "Cataloging and Comparing
Logging Mechanism Specifications for Electronic Health
Record Systems," presented at the 2013 USENIX Workshop
on Health Information Technologies, Washington, DC, USA,
2013.

[7] (2014). Apache Commons Logging. Available:
http://commons.apache.org/proper/commons-logging/

[8] (2013). Common Event Expression: A Unified Event
Language for Interoperability. Available: http://cee.mitre.org

[9] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage,
"Improving Software Diagnosability via Log Enhancement,"
presented at the 16th International Conference on
Architecture Support for Programming Language and
Operating Systems (ASPLOS'11), Newport Beach, CA,
USA, 2011.

[10] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie, "Where do developers log? an empirical study on
logging practices in industry," in Proceedings of the 36th
International Conference on Software Engineering,
Hyderabad, India, 2014.

[11] A. Vance, P. B. Lowry, and D. Eggett, "Using accountability
to reduce access policy violations in information systems,"
Journal of Management Information Systems, vol. 29, pp.
263-289, 2013 2013.

[12] Y. Koen, "Transforming Security Requirements into
Architecture," in International Conference on Availability,
Reliability and Security, 2008, pp. 1421-1428.

[13] J. King, B. Smith, and L. Williams, "Modifying without a
trace: General audit guidelines are inadequate for open-
source electronic health record audit mechanisms," in
Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium, Miami, Florida, USA, 2012, pp.
305-314.

[14] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A.
Paradkar, "Inferring method specifications from natural
language API descriptions," in Proceedings of the 34th
International Conference on Software Engineering, Zurich,
Switzerland, 2012.

[15] J. Slankas and L. Williams, "Access Control Policy
Extraction from Unconstrained Natural Language Text," in
Social Computing (SocialCom), 2013 International
Conference on, 2013, pp. 435-440.

[16] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, "/*icomment:
bugs or bad comments?*," SIGOPS Oper. Syst. Rev., vol.
41, pp. 145-158, 2007.

[17] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie,
"WHYPER: towards automating risk assessment of mobile
applications," in Proceedings of the 22nd USENIX
conference on Security, Washington, D.C., 2013.

[18] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra,
"Automating test automation," in Proceedings of the 34th
International Conference on Software Engineering, Zurich,
Switzerland, 2012.

[19] M. Riaz, J. King, J. Slankas, and L. Williams, "Hidden in
Plain Sight: Automatically Identifying Security
Requirements from Natural Language Artifacts," in 22nd
IEEE International Requirements Engineering Conference,
2014.

[20] A. Meneely, B. Smith, and L. Williams, "iTrust Electronic
Health Care System: A Case Study," in Software and
Systems Traceability, J. Cleland-Huang, O. Gotel, and A.
Zisman, Eds., ed: Springer, 2012.

[21] (2014). iHRIS: Open Source Human Resources Information
Solutions. Available: http://www.ihris.org/

[22] (2014). iTrust: Role-Based Healthcare. Available:
http://agile.csc.ncsu.edu/iTrust

[23] (2008). OCS in an Hour: An Introduction to Open
Conference Systems Version 2.1. Available:
http://pkp.sfu.ca/files/OCSinanHour.pdf

[24] D. Berry, K. Daudjee, J. Dong, I. Fainchtein, M. A. Nelson,
T. Nelson, and L. Ou, "User's Manual as a Requirements
Specification: Case Studies," Requirements Engineering, vol.
9, pp. 67-82, 2004.

[25] J. Carletta, "Assessing agreement on classification tasks: the
kappa statistic," Comput. Linguist., vol. 22, pp. 249-254,
1996.

[26] "IEEE Recommended Practice for Software Requirements
Specifications," vol. 830, ed: Institute of Electrical and
Electronics Engineers, 1998.

[27] I. Jacobson, I. Spence, and K. Bittner, "Use-Case 2.0: The
Guide to Succeeding with Use Cases," ed: Ivar Jacobson
International, 2011, pp. 1-55.

[28] J. King and L. Williams, "Log Your CRUD: Design
Principles for Software Logging Mechanisms," in
Proceedings of the Symposium and Bootcamp on the Science
of Security (HotSoS), Raleigh, NC, USA, 2014.

