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Abstract—The popularity of end-user programming has lead
to diverse end-user development environments. Despite accurate
and efficient tools available in such environments, end-user
programmers often manually complete tasks. What are the
consequences of rejecting these tools? In this paper, we answer
this question by studying end-user programmers completing four
tasks with and without tools. In analyzing 111 solutions to each
of these tasks, we observe that neither tool use nor tool rejection
was consistently more accurate or efficient. In some cases, tool
users took nearly twice as long to solve problems and over-relied
on tools, causing errors in 95% of solutions. Compared to manual
task completion, the primary benefit of tool use was narrowing
the kinds of errors that users made. We also observed that partial
tool use can be worse than no tool use at all.

I. INTRODUCTION

End-user programming [10] environments are designed to
empower people without the significant knowledge of pro-
gramming languages to efficiently perform tasks. These people
can take advantage of automated procedures to solve problems
that might otherwise have to be performed manually. Such
tools come in many forms: as shortcuts and macros in editors,
as stand-alone command-line programs, or formula operations
in spreadsheets. Both research and practice suggest that certain
tools can improve software quality and reduce development
time (for example, Ko and Myers’ Whyline [24]).

Despite the availability of tools and evidence that they can
help, even professional developers oftentimes perform tasks
manually instead of leveraging a tool. For instance, Murphy-
Hill and colleagues report that programmers performed 90% of
refactorings manually, despite having refactoring tools easily
available [30]. Data scientists often adopt workflows that
involve many manual steps when performing tasks such as data
collection, data cleaning, and analysis [17]. However, manual
task completion is not without consequences; for instance,
developers make more errors when refactoring manually [15].
In contrast, improper tool configuration can also cause errors.
For instance, unintended formatting of gene data in Excel has
lead to widespread error in many scientific publications [36].

How do developers decide whether to use a tool or perform
the task manually? Tversky and colleagues [34], [33] theorized
that unlike automated systems that arrive at a decision based on
an objective measure of probabilities derived by compounding
individual simple probabilities, humans decisions are based
on simple heuristics. These heuristics may interfere with a

developer’s ability to accurately estimate the payoff in using a
tool versus the risk of introducing manual errors. Similarly,
Blackwell and Green’s attention investment model [7], [6]
explains the decision to invest in learning a new tool or skill
based on several factors such as risk and expected payoff.
These theories suggest that end-user programmers may make
poor decisions about the risk of performing manual work and
the perceived effort and benefit in learning to use a tool.

In this paper, we study what contributes to programmers’
decision to do manual work when the option to automate ex-
ists. We enlisted online participants for four data extraction and
data calculation tasks, and analyzed 111 responses for each
of the tasks. Our main contribution is a study that explores
the effectiveness and efficiency of end-user programming task
performance with varying levels of automation.

From the study, we observed that neither complete automa-
tion nor a manual approach was consistently more accurate
or efficient. We also observed that partial automation is
sometimes worse than a manual approach. Additionally, many
participants reported that although manual approach was not
ideal they did not know what (and how) tools to leverage
for automation. We found that most of the behavior could be
explained by people either underestimating or overestimating
factors related to risk and configuration effort in using tools.
We recommend several design guidelines that improves the
ability for users to estimate the effort involved in finding and
learning tools for solving a given problem.

II. STUDY DESIGN

We analyzed tasks performed in Microsoft Excel because it
is one of the most widely used programming environments,
with 1.2 billion users [3]. Furthermore, Excel users have
access to a wide spectrum of tools or automation options,
from traditional programming in the form of Visual Basic
for Applications (VBA) to Excel formulas to commands like
filtering and sorting. For this study, we consider use of
formulae, macros, and menu functions in Excel as tool use.

Our study seeks to answer the following research questions:
1) How did end-users solve the tasks?
2) How effective is manual effort versus automation, in

terms of time and error rates?
3) What factors influence the choice of problem-solving

strategy?
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A. Participants

We recruited participants via Amazon Mechanical Turk
(MTurk) [1], an on-line crowd-sourcing marketplace to facil-
itate and coordinate human intelligence tasks (HITs). Recent
research shows that MTurk is an appropriate place to recruit
study participants for behavioral research [28]. We recruited
participants who have completed at least 1000 prior HITs as
vetting criteria for reliability and experience of the participant.
We paid participants $3 USD for completing a set of tasks. We
required participants to have Excel installed on their system.

B. Tasks

We designed tasks that: can be done in a variety of ways,
including manually; cannot be completely solved with one
tool; and reflect common tasks, namely reading and extracting,
and searching and filtering [31]. We designed two tasks (1 and
2), each with two sub-tasks (A and B), and did not control for
the order in which participants performed sub-tasks:

1) Task 1A: This sub-task required participants to extract
zip codes from 61 lines of text, each line containing a postal
address. Zip codes appeared strictly at the end of the text.
A typical US zip code is 6 digits long. However, to break
regularity, two zip codes contained 9 digits and one address
contained a Canadian alphanumeric zip code. Figure 1a shows
a list of addresses and extracted zip codes.

2) Task 1B: This sub-task required participants to extract
zip-codes from 40 lines of text. The text in each line was
a concatenation of name, postal address, phone number, and
email. In this sub-task the zip code appeared interleaved in the
text instead of at the end.

3) Task 2A: This sub-task presented participants with a list
of words consisting of names of 229 fruits and vegetables
(Figure 1c). We asked participants to count the number of
words starting with “A”, starting with “B”, starting with “P”
(deliberately not “C” to break regularity), and finally count the
words containing “berries”.

4) Task 2B: This sub-task presented participants with a list
of 1011 numbers, each representing the average number of
hours a person sleeps. We asked participants to count the
number of people that sleep 3–5 hours, that sleep 6–7 hours,
and that sleep 8–9 hours.

C. Procedure

In a survey, participants were asked about their familiarity
with Excel, from “Not at all familiar” to “Extremely familiar.”
To help analyze how participants completed the tasks, we
instructed participants to record macros, which recorded all
Excel actions performed by participants. Participants could
choose any strategy to solve the tasks. We also instructed
participants to record the time spent on each sub-task, since
macros do not capture timing. We provided participants with
an Excel file containing a task to be performed. Although
participants were free to finish the task at their own pace,
they had to submit their solution within one hour to qualify
for the compensation. Finally, we provided participants with a

(a) Task 1A: Extract zip codes from address strings.

(b) A recorded macro describing a participant’s task solution.

(c) Task 2A: Counting prefixes and substrings in words.

Fig. 1: Screenshots of Tasks and Macro in Excel

link to upload their completed Excel files. They also answered
the following questions about each sub-task:

1) About how long did the sub-task take you?
2) How did you approach the sub-task? Which tools, fea-

tures, or functions did you use to help?
3) Do you think this is the most efficient strategy to solve

the sub-task? If not, what prevented you from using a
more efficient strategy?

4) How might you change your strategy if there were many
more items to process?

5) Did you search online for help for this sub-task? What
phrases did you search for?

D. Analysis

1) Cleaning Data: We first removed incomplete data. 254
people attempted Task 1 and 260 attempted Task 2. After
excluding data where participants did not record macros, we
selected 111 participants for each task. We did not necessar-



ily have 222 participants, since some participants may have
independently completed both tasks.

2) Identifying Strategies: We analyzed the submitted Excel
files and macros to extract the following information: the
tools (functions or commands) used by the participant; the
number of correctly answered questions; and any mistakes
the participants made. In Figure 1b, we display an example
task recording. We also recorded the self-reported time spent
by participants for each sub-task. Finally, we classified each
attempted sub-task into one of the following strategies:

• Manual: The participant does not use any tool.
• Fully-automated: The participant exclusively uses tools.
• Semi-automated: The participant uses a mix of the above

strategies.

III. RESULTS

A. How did people solve the tasks?

Overall, we were surprised with the variety and creativity
of solutions that participants used. Some participants wrote
VBA scripts. Others used semi-automated techniques, such as
first sorting numbers, and then manually selecting rows to get
a count. A few participants used creative solutions, such as
using the find-and-replace command for Task 2A, then using
the resulting popup box that tells you the numbers of items that
were replaced. Many participants used formulas to calculate
solutions. For example, for Task 1A, it was popular to use
a function like RIGHT to extract the last 5 digits to get the
zipcode. For Task 2B, it was popular to use COUNTIF to count
the number of items that met the search criteria.

A description of all the strategies that participants used and
their frequency of use is on FigShare [2]. The number of
solutions for each task ranged 5–8 For instance, one participant
describes his approach for Task 1B as:

Again examined the data to look for a pattern I could
use to extract the data. Used the Formula ribbon
descriptions to get the proper search function (ie,
find, search or lookup). Used MID and SEARCH to
retrieve the 5 digit zip code. Visually inspected the
results and found that my original pattern (search
for ” ???-”) did not work for one record. Changed
the pattern for the search to get the desired result.

Grouping these strategies by level of tool use, we can
see in Table I how often participants decided to manually
perform a task or use a tool instead. The use of manual or
tool-assisted strategies greatly varied with the task performed.
Many participants performed the zipcode extraction task man-
ually (42.3% for Task 1A and 53.2% for Task 1B). In contrast,
very few participants performed the counting tasks manually
(4.5% for Task 2A and 3.6% for Task 2B). Instead, participants
performed the counting tasks in a semi-automated manner
(56.8% for Task 2A and 55.9% for Task 2B), using a tool
to start but then finishing the calculation manually.

While analyzing macros we observed that participants
spent a significant fraction of effort on browsing and getting
familiar with the data. We computed the effort spent on

TABLE I: Manual and tool-assisted strategy usage rates

Task Automated (%) Semi (%) Manual(%)

Task 1A 23 (20.7%) 41 (36.9%) 47 (42.3%)
Task 1B 25 (22.5%) 27 (24.3%) 59 (53.2%)
Task 2A 43 (38.7%) 63 (56.8%) 5 (04.5%)
Task 2B 45 (40.5%) 62 (55.9%) 4 (03.6%)

browsing by counting the fraction of macro statements that
correspond to browsing (scrolling and selection) in Excel.
For scrolling, we identified macro statements starting with
: 1) “ActiveWindow.Scroll”, 2) “ActiveWindow.SmallScroll”
or 3) “ActiveWindow.LargeScroll”. For selection, we iden-
tified macro statements ending with “.Select” such as
Range("D230").Select

On average 65% statements corresponded to browsing data.
We also observe that the fraction of browsing statements
depend on task, strategy, and correctness (p < .001, χ2). Par-
ticipants browsed more in Task 2 than in Task 1; this finding
can be explained by the larger amount of data that participants
needed to process in Task 2. Surprisingly, participants who
adopted a manual strategy for the tasks had fewer browsing
statements than participants who used tools; we hypothesize
that this may be because participants needed to inspect the
data to understand its structure before applying a tool and
also needed to inspect the data after the tool was applied
to ensure correctness. Finally, participants who performed the
task correctly tended to browse more; this could be explained
by them taking extra care in reviewing their results.

Participants completed tasks in a variety of ways, includ-
ing by repurposing tools. Furthermore, participants spent
significant effort on browsing data, which correlated with
task, strategy, and correctness.

B. Automated vs. manual performance

1) How fast were people at solving the task?: Mean times
for all participants and strategies are presented in Figure 2.
The length of each bar represents the time spent on a task
using a strategy. One overall conclusion is that there is no
consistently superior strategy. For example, on average to
perform Task 1B, participants spent 412 seconds to do so man-
ually, 564 seconds semi-automatically, and 790 seconds fully
automatically manner. However, for Task 1A, we participants
took 360 seconds to perform the task in automated manner,
416 seconds manually, and 564 seconds semi-automatically.
Finally, although we report manual times for participants that
did Task 2A (n = 5) and Task 2B (n = 4), these are primarily
outliers who submitted completely incorrect answers.

Interestingly, the slowest performers in all tasks used tools
exclusively to solve tasks. There were a handful of individuals
who used fully automated solutions to solve the problem
quickly, but the performance gain was only moderate over
other manual users who were almost as fast. Why were tool
users often so slow? According to self-reports in the post-
survey, participants spent significant time trying to understand



TABLE II: Accuracy rates by strategy and task.

Task Automated (%) Semi (%) Manual (%)

Task 1A 4.4% 31.7% 44.7%
Task 1B 88.0% 40.7% 44.0%
Task 2A 53.4% 34.9% 40.0%
Task 2B 71.1% 69.4% 25.0%

Fig. 2: Average time (in seconds) versus strategy. The •
indicates the average time across all tasks.

or adapt the tool to the problem. Some slow performance in
manual and semi-automated approaches could be explained
by participants that attempted a more automated solution, but
then abandoned their approach and completed the task in a
manual fashion. One participant describes this situation:

Task 2A: Seemed straighforward, thought about try-
ing a couple things, then figured I was overthinking
it. I just did a sort and then highlighted the items
and looked at the count.

There was no consistently fastest strategy, but tool-only
users were often the slowest performers.

2) How correct were people in solving the task?: For this
analysis, we measured correctness as the percentage of correct
answers provided for a sub-task. We observed that, although
tools are generally designed to reduce errors, participants who
exclusively used tools were not immune to errors. In fact,
many times participants were not only slower using tools,
but wrong as well. For example, almost every participant
using a tool (96%) made errors for Task 1A. Semi-automated
approaches did not fare much better; they had the lowest
accuracy ratings for three of the tasks.

Table II displays the accuracy of each strategies for each
task. Task 1 has statistically significant differences in accuracy
rates by strategy (p < .01, χ2), but not for Task 2. In Task
1A, automated solutions achieve a low accuracy rate of 4.4%,
whereas in Task 1B, they have twice the accuracy rate over
manual or semi-automated strategies.

Table III displays a breakdown of speed, accuracy, and

strategy. We used any task completion speed below the first
percentile for a rating of slow, and any task completion speed
above the third percentile for a rating of fast. If a participant
made no errors, we indicate this as correct, otherwise, if they
made any error, we indicate this as error. From this data, we
can observe that it was not typical to have a fast solution and
be correct. Unfortunately, participants that try to automate their
solutions with tools are often still slow and incorrect. Further,
no strategy consistently ensured both speed and correctness.

We also analyzed the correctness of task against the par-
ticipant familiarity with Excel. Figure 3 plots the correctness
against familiarity for each strategy. We next plot a regres-
sion line for each strategy using LOESS smoothing [11].
Based on LOESS analysis, using a fully-automated strategy
results higher correctness across all familiarity levels. Another
interesting trend is, while correctness in manual strategy
increases as the familiarity increases, there is slight decline in
overall correctness as familiarity increase for fully-automated
and semi-automated strategies. This slight decline in overall
correctness in fully and semi automated strategies may be
attributed to blindspots introduced by tool use and familiarity.

Why did participants make so many errors with tool-assisted
approaches, especially for Task 1A? One major reason was
that participants may have failed to exercise any oversight.
While most zip codes were 5 digits, a couple were 9 digits
and one was alphanumeric. If participants assumed that all the
zip-codes were 5 digit numbers and overlooked exceptions,
they can very easily make this mistake. Given that many
participants went on to do Task 1B, correctly with a tool,
we suspect this is the case. For participants that did notice an
error, this was often a reason to switch from a fully automated
solution to a semi-automated solution. For example:

This one was fairly easy, just needed to lookup right
truncation. Of course I overlooked the plus four zips.
But there were so few, I just corrected by hand. Still
only took 8 minutes.

Although tools could help improve correctness, they
could also introduce blindspots that contribute to dev-
asting error rates. No strategy was consistently accurate.

3) What type of errors did people make?: We wanted to
understand the variety of errors that people may make and
relate them to different strategy usage. We expected the error
categories to be unique to the strategy taken by participants.
For each participant, we classified the error they made into a
pool of error categories by manually inspecting the recorded
macro. From this inspection, we were able to infer the error
that participants made in their solutions.

After examining the category of errors participants made,
the most clear result was that participants who exclusively
used tools made the fewest kinds of errors. That is, although
automated users still were inaccurate, the error they made
was typically isolated to one specific class of errors, whereas
participants who made use of manual or semi-automated
solutions had a much wider set of errors made. For example,



TABLE III: Strategy, speed, and accuracy
(Automated) (Semi) (Manual)

Task 1A Slow Moderate Fast
Correct
Error

Task 1B Slow Moderate Fast
Correct
Error

Task 2A Slow Moderate Fast
Correct
Error

Task 2B Slow Moderate Fast
Correct
Error

Automated

Fig. 3: Correctness vs. Familiarity vs. Strategy

some participants who made use of sorting and manual count
strategy for Task 2A had a phonetic sort that caused an error
in how items were grouped that was not present for other
users. Other users who used the semi-automated approaches
often experienced off-by-one errors when they selected data
to copy. Finally, users who employed manual strategies often
experienced mechanical errors when typing out answers.

Table IV lists the distributions of errors across various
categories. We next describe these categories next:

• Manual: This category of error includes logical human
errors. In Task 1, this category of error included cases where
participants did not account for the exception cases (either
9-digit or Canadian Zip code). It is surprising to see 9 par-
ticipants who performed the task manually also got confused
with the exception cases. In Task 2 this category included cases
where participants counted incorrect data. For instance, in Task
2A first two questions required participants to count words
beginning with “A” and “B”. However, the third question
required participants to count the words beginning with “P”
to break the regularity. We observed that participants counted

words beginning with “B” instead.
• Typing: This category involved participants making mis-

take while typing the answers. We observed this class of errors
exclusively in Task 1 and was dominated by strategies with
some form of manual steps. We suspect the data cleaning
nature of task and more participants following manual strategy
in Task 1A is reason that this category exclusive to Task 1.
The only exception is one participant who typed the formula
in the incorrect location for Task 1A.

• Copy: Participants often preferred to perform the com-
putation in separate area and then copy the final solution to
the designated cells. This category includes participants who
forgot to copy the solution.

• Partial: This category constitutes instances where partic-
ipants did not complete the task. This category was exclusive
to Task 1. We suspect that participants estimated that Task 1
entailed substantially more work, compared to Task 2. Task
1 involved participants having to extract 61 data elements for
Task A and 20 for Task B, whereas, Task 2 involved answering
just 4 questions (Task A) and 3 questions (Task B).

• No Task: This category constitutes instances where partic-
ipants did not perform one sub-task at all. We did not analyze
the results if participants did not perform both of the sub-tasks.

• Sort: This category was exclusive to Task 1 where some
participants sorted the data rows before or after extracting the
data. This affected the order of the desired output. We are
unclear why participants performed the sort.

• System: This category was observed exclusively for Task
2, where the functionality of the environment worked in an
unexpected way, such as the “phonetic” sort described earlier.
In another case, the input data was likely corrupted by the
environment for a participant.

Tools reduced the class of errors participants made.

C. Why did a person perform a task manually?

We next examine several factors that influence why a
participant did not use a tool to perform a computational task.

1) How did the person decide to do the task?: We were
interested in understanding the motivations of people in con-
sidering (or ignoring) tools for a task. For each participant,



TABLE IV: Error Categories

Task Str.
Error Category

Manual Typing Copy Partial No Task Sort System

1
Man 9 28 17 14 4 1 0
Semi 11 15 12 10 7 2 0
Auto 18 1 1 2 4 1 0

2
Man 5 0 1 0 0 0 0
Semi 54 0 4 0 0 0 3
Auto 23 0 7 0 2 0 0

TABLE V: Participants responses for “Do you think this is
the most efficient strategy to solve the task?”

Task Response Automated Semi Manual

Task 1
Yes 28 24 49

Maybe 6 10 4
No 14 33 42

Task 2
Yes 61 78 3

Maybe 7 16 2
No 20 23 4

Total 136 184 104

we systematically went through the post-survey responses. In
particular, we analyzed participant responses for question: “Do
you think this is the most efficient strategy to solve the task? If
not, what prevented you from using a more efficient strategy?”

If the participant indicated that their approach was the most
efficient for a subtask we classified the response as Yes, if not
we classified the response as No. If the participants response
indicated that (s)he was not sure we classified the response as
Maybe. We did not consider 20 instances of empty or non-
applicable responses across subs-tasks.

Table V presents the distribution of responses across Tasks
for automated, semi, and manual approaches. Overall, 54%
of participants responded Yes, 31% responded No, 10% re-
sponded Maybe, and 5% responded NA or did not respond.
In all, 65% (89/136) of people that followed an automated
strategy responded that their strategy was efficient. We were
surprised that roughly half (52/104) the people that attempted
the task manually also felt their strategy was efficient as well.
The responses alluded to the fact that participants felt that the
manual strategy was efficient because, it was simple and fast
for the small dataset in the tasks, as captured in this response
by a participant “I think this is a pretty quick and dirty way
of accomplishing the goal.”

We explicitly asked participants to document what prevented
them from using an efficient strategy, if they thought their
strategy was not efficient. Two authors independently coded
a random subset (10%) of responses. Authors followed the
guidelines of open card sort [12], where they created categories
based on the data itself. We then compared the results and
documented that the authors were in agreement for 77.3% of
their classifications. Based on the discussions, the first author
then coded the rest of the responses. No new category emerged
as the first author coded rest of the responses.

We next list the categories that emerged from the participant

Fig. 4: Reasons for not selecting the most efficient strategy

responses to the question ”If not, what prevented you from
using a more efficient strategy?”:
• Unknown: Did not know a better way to do a task, e.g.

“no. I can’t think of any other strategy”
• Unfamiliar: The user is cognizant of the existence of

tools but was not sure on what (or how) to use them, e.g. “I
am sure there was a formula that would have been faster, but
I didn’t know it.”
• Learning Effort: The user was impeded by perceived

effort in learning to use tool, e.g. “could not figure out how
to make it work”.
• Data: The choice was dependent on data, e.g. “For this

set of data I think it was the fastest way to get it done.”
• Miscellaneous: This was a catch-all category for re-

sponses that did not fit anywhere else. These included reasons
such as: tool that did not did not work as expected, participant
ran out of time, or participant made incorrect assumptions
about the task.
• No Reason: Did not provide any reason or the provided

reason is vague.
Figure 4 presents our findings on the impediments users face

in employing what they consider as an efficient strategy. Most
of the users were cognizant of existence of a tool that would
allow them to perform the task better (Category “Unfamiliar”).
However, they were not sure of either what tool to use or how
to use a tool. Not considering the catch-all “Miscellaneous”
category, the second most common impediment faced by
participants was that they perceived the investment in learning
about the tool too high for them to leverage tools in their task.
Next participants reported that they were unaware of any other
way of accomplishing the task. Followed by participants who
thought their approach was not optimal, but data-set forced
them to use the approach they chose.

While we anticipated participants to cite unfamiliarity with
tools and not knowing any other ways to solve a task as the
reasons for not using an optimal strategy, the explicit “learning
effort” category provides opportunity for toolsmiths to design
better tools that users perceive as easy to learn.



Users can be dissuaded from tool use based on the
perceived learning effort.

IV. DISCUSSION

With the estimate that end-user developers outnumber pro-
fessional developers by 50 million to 3 million [10], the
goal of this research was to gain a deeper understanding of
the decision process that end-user developers employ when
deciding between manual effort or tool use. Additionally, some
of our findings may generalize to professionals developers as
well. This section discusses implications of our findings and
threats to validity. We first summarise some of the general
patterns we observed in the participant behavior.

A. Findings

1) No half-measures: We were surprised to find that par-
ticipants performing the task either manually or in a com-
plete automated fashion consistently outperformed participants
employing a semi-automated approach, in dimensions of task
correctness and speed. In general, a participant performing
manual actions in the task is at a higher risk of introducing a
mechanical errors [4]. However, we suspect that participants
who performed the tasks manually were generally more careful
to look for and avoid such errors. In contrast, participants
performing the task in a semi-automated fashion may not have
accounted for the risk of mechanical errors due to manual part
of the strategy.

2) Tools reduce the kinds of errors made: We observed that
the use of tools not only diminished the number of errors,
they also helped participants avoid certain classes of errors.
For instance, copy-paste and typing related errors are almost
exclusively observed in the cases where participants attempted
to perform the task manually or semi-automatedly. Such
simple coding mistakes often produce notoriously difficult-to-
find defects [20], [21].

Although use of tools did help participants avoid errors
in general, Task 1A was an exception. Specifically, users
of RIGHT function often did not correct for the interleaved
exceptions (9 digit and Canadian zip codes). In this case, use
of tool may have caused participants to get false sense of
correctness by working 58 out of 61 cases and leaving out 3.

3) Large investments can go bust: From our analysis of
strategy vs. time and correctness we observed that although
some benefited from their investment to use tool, many often
spent a long time learning how to get a tool to work and never
received the expected payoff (either performed task very slow
compared to others, or still made errors).

Further, not all solutions translated well from the first part
of the task to the second part of the task. For example, 41 par-
ticipants attempted Task 1A in using RIGHT function which
does not lend itself to the Task 1B. In contrast, participants
that used the MID function, were better able to adapt between
tasks. When an investment went bust, participants would often
just switch to a manual approach:

I couldn’t find any way of easily doing the second
task and as I had already spent so long on the first I
just manually copied and pasted everything I could.

4) Tool selection factors: There is a large body of work in
psychology that studies human decision making. For instance,
Khaneman in his book “Thinking Fast and Slow” [23] talks
about how human decision making is not always objective
and is often affected by biases, beliefs, and heuristics. For
instance conjunction fallacy [34] is phenomena when a person
incorrectly assumes that specific conditions are more probable
than a generic one. Another line of work that is relevant to
this study is the law of small numbers [32] a form of sampling
bias. When sampling, users focus on the little data at hand,
while discounting issues which could occur in other data-sets.
These effects were clear in our experiment, where participants
were confident they were right even when there were better
solutions. Concretely, we observed these effects in play when
a significant number of participants incorrectly assumed that
zip-codes are always 5 digit numbers on the right of the input
string in Task 1A.

We also observed the availability heuristic [33] in partic-
ipant behaviour. Availability heuristic causes a person to be
more likely to weigh their judgment towards a recent event
instead of objectively evaluating the present situation. We
observed that most of the participants did not change their
strategy for solving each subtask, even though they spent time
adapting the strategies to the new subtask.

B. Implications for Design

The findings from the presented study may help with the
design of the tools for facilitating better user interaction and
engagement. We next outline some recommendations.

1) Provide estimates for learning effort: We observed that
a significant number of participants had difficulty in realisti-
cally estimating the time and effort required on their part to
understand and configure a tool, and whether that would be
worth the investment.

Toolsmiths in a programming environment could assist their
users to make better estimates. For instance, Viriyakattiya-
porn and Murphy [35] proposed an approach to leverage a
programmers history of tool use to actively recommend tool
in current context. Likewise, Johnson and colleagues [22]
propose leveraging developer knowledge to tailor a tools’
notifications.

An estimate of difficultly or time-commitment of using a tool
can further enhance these approaches. For example, a naı̈ve yet
effective approach could be to provide an estimate of the time
to configure a tool correctly based on how long other (first-
time) users took to configure it. Furthermore, programming
environments could attempt to actively guess what task users
are attempting and provide them with contextual data.

2) Highlight unusual values after applying functions: We
also observed that a significant number of participants in
Task 1A incorrectly extracted the Canadian and the 9-digit
zip codes. Partly because these participants approached the
problem using the RIGHT function to extract the 5 characters



towards the right of the input string. While this approach
worked well for 58 out of 61 cases, the participants still had to
manually correct the one case involving the Canadian and two
cases involving the 9-digit zip codes. Oftentimes, participants
overlooked these exception cases and incorrectly reported the
tool output as the correct zip-code.

While a manual inspection to verify tool output is highly
recommended, we suggest tools should be preemptive in
reminding developers to perform review. We also recommend
toolsmiths to design tools cognizant of the “unusual” results
to help ease the process of review. For instance, existing body
of research on code-smells [13], [18], [19] can be extended to
detect and report such instances to the user.

3) Tool Recommendation and Strategy Sharing: In the post-
survey, when participants were asked to state the reasons that
prevented them from using what they thought was an optimal
strategy, 35 responses alluded to the fact participants were
unaware of any other ways to solve the task at hand, despite
a variety of strategies employed by other participants. Exist-
ing program synthesis approaches like FlashFill [16] in part
alleviate the problem by automatically proposing a solution
as a function of input output relationships. The programming
environment can further help such users by recommending
alternate strategies based on the current context of the user by
leveraging the strategies employed by other users in similar
contexts. For instance, environments can leverage concepts
from “Programming by example” [26] where a software agent
records the activities of users to reproduce them later. As the
diversity of such recording grow overtime, these recordings
can be queried as a shared resources (online or offline) for
alternate strategy recommendation [29].

C. Threats to Validity

The primary threat to external validity is the representa-
tiveness of our data and tasks to the real world data cleaning
workflows. To address this threat we focus on data extraction
and data calculation tasks in Excel, which are typical compu-
tational tasks in programming and related fields such as data
science. In 2014, New York Times reported [27] that analysts
spend up to 80% of their time in cleaning data.

Threats to internal validity include the correctness of the
identified functions used by the participants. Since authors
manually identified the functions used by the participants,
human error may affect our results. To minimize the effect,
the authors checked the identified functions against the macros
that were recorded by the participants while they were per-
forming the tasks. Additionally, the authors manually coded
the survey responses to identify the impediments faced by par-
ticipants in using tools. To minimize this threat, we followed
the safeguards for conducting empirical research proposed by
Li [25]. To ensure researcher agreement about the findings,
two authors independently analyzed the a random subset of
participant responses to identify impediment categories.

These threats could be further minimized by evaluating
more tasks in other developer programming environments and
different settings. We plan to share various materials on the

project web [2], to enable other researchers to emulate our
methods to repeat, refute, or improve our results.

V. RELATED WORK

Burnett and colleagues studied the introduction of a new
tool for spreadsheets (assertions) that could be used to improve
the detection of faults when compared to manual inspec-
tion [9]. Likewise, Cunha and colleagues demonstrate that
Excel tools based on high level domain models help in
avoiding errors [14]. In contrast, Murphy-Hill and colleagues
demonstrate that users often do not use a specific set of tools
to perform a specialized task (refactoring) [30]. However, we
differ from this research in two different ways: 1) Instead of
participants being instructed to use a specific tool, participants
are given free reign to choose how they solve a task. This
allows us to observe of this decision process. 2) Our tasks
do not necessarily have a ready-made tool for directly solving
the task (unlike performing an extract method refactoring with
an extract method tool). Instead, participants must select from
a federation of tools for solving the tasks, which sometimes
involves manual steps in between application of two different
tools.

To understand the decisions users make when selecting tools
for problem-solving, Blackwell and Green [7] have proposed
the investment of attention model. This framework describes
four cost-benefit variables: cost, risk, investment, and payoff
that help predict a person’s willingness to learn a new skill or
try a new tool. Blackwell and Burnett [5] have used this to
model adoption of a new tool in a spreadsheet. In a similar
fashion, Brandt et al. introduce the concept of ‘Opportunistic
Programming’[8], which describes a class of developers who
adopt a minimum learning style and attempt to find online
help specific for solving a task. Consistent with this approach,
several participants in our study reported watching tutorial
videos or reading blog posts in order to learn a strategy for
solving the tasks.

VI. CONCLUSION

In this paper we found that participants performing Excel
tasks using tools took more time on average than participants
performing the task manually. However, 63% of participants
performed the task correctly using automated solutions, com-
pared to 37% participants that chose manual analysis. We
found that most of the behavior could be explained by people
either underestimating or overestimating factors related to risk
and configuration effort in using tools. Environments that assist
in estimating these factors may help future programmers make
better choices when it comes to deciding whether to use tools.
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