
Designing for Dystopia

Software Engineering Research for the Post-apocalypse

Titus Barik, Rahul Pandita, Justin Middleton, and Emerson Murphy-Hill
North Carolina State University, USA

{tbarik, rpandit, jamiddl2}@ncsu.edu, emerson@csc.ncsu.edu

ABSTRACT
Software engineering researchers have a tendency to be opti-
mistic about the future. Though useful, optimism bias bol-
sters unrealistic expectations towards desirable outcomes. We
argue that explicitly framing software engineering research
through pessimistic futures, or dystopias, will mitigate opti-
mism bias and engender more diverse and thought-provoking
research directions. We demonstrate through three pop cul-
ture dystopias, Battlestar Galactica, Fallout 3, and Children
of Men, how reflecting on dystopian scenarios provides re-
search opportunities as well as implications, such as making
research accessible to non-experts, that are relevant to our
present.

CCS Concepts
•Human-centered computing→HCI theory, concepts
and models; •Social and professional topics → Com-
puting / technology policy;

Keywords
culture; design fiction; dystopia; ideation; post-apocalypse;
software engineering

1. MOTIVATION
Literary theorists have long recognized the trade-offs in

optimistic and pessimistic thinking through utopias, uncrit-
ical visions of an idealized future, and dystopias, scenarios
which embody the fears and concerns originating from our
own hesitancies regarding the future [3]. Unfortunately, re-
search suggests that scientists are overwhelmingly optimistic,
and subject to the effect of optimism bias — a robust and
pervasive finding for peoples’ tendencies to assign higher
probabilities to desirable outcomes even in the face of con-
tradictory evidence that challenges their beliefs [2].

For software engineering researchers, dystopias may serve
as a means to mitigate optimism bias and to engender more
diverse and thought-provoking directions in research. To

Figure 1: Reluctant to rely on computers to assist
in planning, Captain Adama and Executive Officer
Tigh calculate and revise tactics offline using printed
navigation charts and pencil-and-paper.

advance our argument, we explore three dystopian scenarios
from modern pop culture, and investigate the relevancy of
software engineering research when designing for dystopia.
We also demonstrate that, despite the fact that dystopias are
dark fantasies that test the boundaries of reality [10], they
nevertheless offer implications and insights that are relevant
to our present. In other words, dystopian thinking “allows
us to apprehend the present as history” [21].

The rest of the paper is structured as follows: Section 2
adopts three dystopian scenarios from pop culture as a chan-
nel into potential software engineering research visions; Sec-
tion 3 considers ways in which dystopian thinking gives us
insights into the present; finally, Section 4 proposes the use
of design fiction as a means to further explore dystopia.

2. DESIGN SCENARIOS
Using scenario paradigms [18], a literary technique used

to construct alternative futures to facilitate reasoning, we
investigate three dystopian design scenarios from pop culture
media. For each scenario, we describe the story and setting
of the selected dystopia, contextualize the role of software
engineering, and use the scenario as a source of inspiration
through which we postulate research directions in software
engineering.

2.1 Battlestar Galactica
Story and setting. Heavily informed by the events of

9/11, Moore and Eick’s Battlestar Galactica television series



reboot depicts an “end of the world” scenario: the Second
Cylon War, in which robots, called Cylons, return to mer-
cilessly attack the human colonies, nearly eradicating the
human race. The few remaining survivors flee into space
with faster-than-light (FTL) jump technology as a last re-
sort. The central story follows one of the spaceships, the
Battlestar Galactica, and the crews’ search for a new home.
However, the officers on Galactica suspect that there are
Cylon cyber-terrorists on the ship masquerading as humans.

Battlestar Galactica presents a dystopia in which the crew
has a deep distrust in technology, as a result of fears that
technology could be hacked by the Cylons. This hostility
towards technology is exemplified in an exchange in which
the Secretary of Education Laura Roslin asks Commander
William Adama about installing a networked computer sys-
tem to promote better teaching. Adama declines and says
that “many good men and women lost their lives aboard
this ship because someone wanted to make a faster computer
to make life easier” [7]. Despite the additional effort, des-
ignated crew members are often seen performing complex
calculations with pencil and paper, limiting interactions with
the computer systems only when necessary to control the
spaceship (Figure 1).

Role of software engineering. The justified skepticism
of technology presents perplexing design constraints for soft-
ware engineering researchers. How can toolsmiths support
developers when developers are reluctant to use computers
to develop their programs in the first place? And what mea-
sures can the crew take to increase their confidence that their
systems have not been tampered with?

Designing for dystopia. In this dystopian scenario, we
are reminded of a mainframe era up to the mid-1980s where
developers predominately wrote software without the use of
a computer. In this era, developers fed decks of physical
punch cards to the computers to run programs. To facilitate
the editing of these programs, developers could handwrite
programs on coding sheets, a special form that would be
meticulously converted to machine-readable cards by trained
human operators.

One dystopian advantage of this approach is the inherent
security properties that come with a physical deck: even if
Cylons were to hack into the main computers and destroy
software, no virtual computer attack could ever alter a phys-
ical card. In resurrecting a long-abandoned line of research,
however, we ask: could a researcher design a “system” for
developers to write software more naturally using pencil-
and-paper? One intriguing possibility may be to remix old
technology with new. We may, for example, deploy a read-
only interpreter on ROM. This interpreter could use optical
character recognition to eliminate the need for the dedicated
human operator; instead, it could read the coding sheets
directly. In this way, we could maintain the physical security
properties of cards, while simultaneously offloading compu-
tation to the read-only software interpreter. Unfortunately,
as punch card technology became obsolete, so too did efforts
to pursue this line of research [5].

The benefits of a ‘pencil-and-paper IDE’ apply not just to
dystopia but might have applications even today. As one ex-
ample, having a pencil-and-paper IDE can enable developers
to write algorithms, even when they are in situations where
consistent access to computers is not available. Importantly,
some developers even postulate that there are cognitive ben-
efits to writing code away from the computer [14].

Figure 2: The people in Fallout rely on a barter-
ing economy as a fundamental means of exchanging
goods and services.

2.2 Fallout 3
Story and setting. Fallout is an open-ended, retro-

futuristic role-playing video game that takes place genera-
tions after a global collapse that has resulted from resource
scarcity. This conflict over the limited resources culminated
to a nuclear holocaust that horrifically transformed the world
into a hostile wasteland and destroyed most of the human
race [13]. During the holocaust, a few surviving groups fled
to underground vaults, where they remained in isolation and
ignorance of the outside world for generations before finally
returning to the surface.

Role of software engineering. In the absence of any re-
liable economic and technological infrastructure, we envision
that the sharing of data and software, like other goods in
Fallout, are limited to in-person bartering (Figure 2). Acquir-
ing new programs and patching the software in this dystopia
is both risky and costly, because obtaining such data requires
a person to travel under the potential threats of numerous
hostile enemies.

Designing for dystopia. Today, we take for granted
the availability of reliable networks that make the transmis-
sion of software essentially free. For example, we routinely
take advantage of third-party libraries from remote package
sources and use them in our own programs. But such con-
venience has not always been the case. In the pre-Internet
era, software developers might use bulletin board systems, or
BBSes, to send and receive pieces of software through soft-
ware exchanges [6]. Developers would use dial-up modems
over analog telephone lines, often incurring significant long-
distance costs and sometimes having to re-transmit data
because of unreliable communication channels. Some BBSes
only had a limited number of lines, supporting 2-4 simul-
taneous users. Because of this scarcity, BBSes instituted
tit-for-tat quotas, in which developers were first required
to contribute a piece of useful software before downloading
software within the repository. And because patches often
took months to propagate through these BBS networks (if
they appeared at all), local developers would instead trade
their own “unofficial” patches to third-party software.

The dystopian perspective of Fallout is reminiscent of the
scarcity of the BBS era: although the needed software or
library theoretically exists, the cost of obtaining the software
is steep. Rather than having a central authority for software
libraries, developers instead must exchange software through



Figure 3: In Children of Men, a worker from an
aging demographic mourns the death of the world’s
youngest person: 18 years old.

agoric, peer-to-peer markets [20]. Software engineering re-
searchers must explore avenues to support and encode an
economics of computation, such that the costs of software
functionality are somehow propagated alongside the func-
tionality itself. Algorithms could use perform cost-benefit
trade-offs on libraries and aid developers in deciding whether
to use a library, or to write the functionality from scratch.

History reminds us that periods of scarcity and excess occur
in cycles. The period of high-speed Internet was followed
by challenges in mobile computing, where like the BBS era,
disconnections are frequent and power constraints restrict
bandwidth [9]. Designing with dystopia in mind prepares us
for the next inevitable cycle of scarcity.

2.3 Children of Men
Story and setting. Alfonso Cuarón’s film, Children of

Men, presents a future in which Cuarón asks: “if there were
no future, how would we behave?” [1]. The story is framed
within a childless Great Britain, where nearly two decades of
a global infertility crisis have led to societal collapse — the
youngest known human on the planet is 18 years old. To sur-
vive, Great Britain has transformed into a militarized police
state in which citizens are required to submit to mandatory
fertility testing; government-distributed suicide kits are ad-
vertised on television for those who have lost hope. As British
propaganda tells the viewers: “the world has collapsed; only
Britain soldiers on.” Having surrendered to the possibility of
finding a cure to infertility, the government’s aim is above
all for the security, comfort, and pleasure of its citizens [15].

The technology of this dystopia is not unlike that of the
present: as a result of the authoritarian actions of the gov-
ernment, Great Britain, unlike the rest of the world, has
managed to maintain most of its infrastructure. Case in
point, citizens have access to technology such as televisions
and computers, as well as access to public transport, such
as the London Underground. However, with the end of
times within reach, societal and technological progress has
essentially halted.

Role of software engineering. Children of Men reflects
a demographic shift in the types of people who are software
engineers as well as a shift to primarily support the mainte-
nance existing software, rather than the development of new
software for end-users. Consequently, the skills needs to be
precisely allocated to fit the software maintenance needs of
the population, and balanced against other necessary skills.

Designing for dystopia. The authoritarian dystopia
of Children of Men allows us to manipulate the scope of
software engineering education when the government can
explicitly tune the workforce. At one extreme, which we
might consider the utopian ideal, every individual can dabble
with programming, as implied by government initiatives such
as CS for All.1 Thus, as the population increasingly shifts to
higher age brackets, the government would need citizens to
rapidly develop basic programming competency. In such an
environment, software engineering researchers must consider
how to quickly teach software engineering skills should the
need arise, in ways beyond that of a slow, traditional, four-
year education. For example, job training may even need
to be on-the-fly, in which systems like Tutorons can provide
on-demand help to teach the citizen the task that needs to
be performed as they work on it [12].

But simply adding more programmers doesn’t necessarily
imply better programs. Harrison argues, for example, that
“it’s simply unfathomable that we could expect security from
the vast majority of software applications” when software
is written by undisciplined programmers [11]. At this other
extreme — a perspective that is consistent with human-
capital theory of economics [16] — the government would
allocate professional programming training only to those
most capable of performing the task. Essentially, CS for the
Select Few.

In the utopian ideal, it is possible that universal coding
skills would increase the overall welfare of society. However,
it is also possible that the supply of available coders would
far outweigh the demand for this skill set, resulting in lower
wages or increased unemployment. Perhaps this is why pro-
fessional organizations in other disciplines, like the American
Medical Association and American Bar Association, employ
uneasy measures such as licensing, to artificially limit the
number of individuals who may practice these disciplines [25,
23]. Both of these organizations argue that enforced caps are
necessary in order to maintain high standards.

3. IMPLICATIONS
We examine how future dystopian scenarios can be used

to help us think about the present, beyond the scenarios
discussed in this paper.

Dystopian thinking forces us to confront difficult
potential futures. Dystopian thinking is not simply pes-
simistic thinking. If we think of a potential future as a single
point in an infinite event space, dystopian thinking challenges
us to confront our own work with “distant” event spaces that
may be undesirable for software engineering researchers, but
ones in which we may be forced into nevertheless. For ex-
ample, teaching programming to everyone to address social
injustice is no doubt a noble goal in computer science educa-
tion, but our unchecked enthusiasm for it may blind us to
the economic realities of supply and demand that govern the
job market, as in the hypothetical situation posed through
Children of Men.

Dystopian thinking benefits us even if the dystopia
doesn’t materialize. As our design scenarios have shown,
dystopian thinking can provide an orthogonal lens, a cre-
ative playspace of sorts, through which we explore what
might otherwise be controversial ethical or technological

1https://www.whitehouse.gov/blog/2016/01/30/
computer-science-all



issues. Many dystopian narratives are in fact critical reflec-
tions on present societal issues, framing these issues in terms
of fictional dystopian scenarios rather than non-fiction [21].
This recasting can foster discussion in research and lead
to more imaginative solutions. For example, Munz and col-
leagues have used zombies, that is, reanimated human corpses
that feed on living human flesh, to mathematically model
the important problem of understanding infectious disease
propagation [22]. And Prottas uses the trope of vampires
to highlight how organizations unintentionally discriminate
against individuals with disabilities [24].

Dystopian scenarios make research accessible to
non-experts. Pop culture is not strictly for entertainment;
this medium can also serve to inform the public about com-
plex issues and make them accessible to non-experts [8].
Dystopian scenarios in particular can be used to illuminate
specific problems and highlight the importance of software
engineering research in addressing them. For example, the
essential ideas of secure software design can be illustrated
using narratives like Battlestar Galactica, without the need
for technical jargon. Dystopias may also serve to inspire oth-
ers to contribute to software engineering research, analogous
to how video games have been used in software engineering
to spark interest in programming [4]. Although researchers
are inspired at times by dystopian scenarios for ideas, in-
tentionally situating our work within a dystopian frame is
also useful for demonstrating the relevancy of our work to
others [19].

4. CONCLUSION
We have argued for the utility of thinking in terms of

dystopias for inspiring visionary research directions and mit-
igating optimism bias. Other communities, such as human-
computer interaction, have formalized this style of fantasy
thinking through design fiction, that is, the borrowing or
constructing of narrative elements to understand possible
future designs. For example, the HCI community offers “al-
ternate endings” workshops as a means to circumvent visions
of the future that would otherwise be described as “typically
utility-driven and focus[ing] on the short term” [17]. Our
community might likewise benefit from exploiting the syn-
ergy between software engineering research and dystopian
ideas to accomplish the same.

5. ACKNOWLEDGMENTS
This material is based upon work in part supported by the

National Science Foundation under Grant No. 1252995.

6. REFERENCES
[1] S. Amago. Ethics, aesthetics, and the future in Alfonso

Cuarón’s Children of Men. Discourse, 32(2):212–235,
2010.

[2] D. A. Armor and S. E. Taylor. When predictions fail:
The dilemma of unrealistic optimism. In Heuristics and
Biases, pages 334–347. Cambridge University Press,
2002.

[3] R. Baccolini and T. Moylan, editors. Dark Horizons:
Science Fiction and the Dysopian Imagination. Taylor
& Francis Group, 2003.

[4] T. Barik, M. Everett, R. E. Cardona-Rivera, D. L.
Roberts, and E. F. Gehringer. A community college

blended learning classroom experience through artificial
intelligence in games. In Frontiers in Education, pages
1525–1531, 2013.

[5] R. Bornat and J. Brady. Using knowledge in the
computer interpretation of handwritten FORTRAN
coding sheets. International Journal of Man-Machine
Studies, 8(1):13–27, 1976.

[6] P. R. Dewey. Essential Guide to Bulletin Board
Systems. Meckler Publishing, 1987.

[7] J. T. Eberl. Battlestar Galactica and Philosophy:
Knowledge Here Begins Out There. Blackwell
Publishing Ltd, 2008.

[8] J. Fiske. Understanding Popular Culture. Routledge,
2010.

[9] G. Forman and J. Zahorjan. The challenges of mobile
computing. Computer, 27(4):38–47, Apr. 1994.

[10] M. D. Gordon, H. Tilley, and G. Prakash, editors.
Utopia/Dystopia: Conditions of Historical Possibility.
Princeton University Press, 2010.

[11] W. Harrison. From the editor: The dangers of end-user
programming. IEEE Software, 21:5–7, 2004.

[12] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann.
Tutorons: Generating context-relevant, on-demand
explanations and demonstrations of online code. In
VL/HCC ’15, pages 3–12, Oct. 2015.

[13] D. Hodgson. Fallout 3: Prima Official Game Guide.
Prima Games, 2008.

[14] A. Hunt. Pragmatic Thinking and Learning: Refactor
Your Wetware. Pragmatic bookshelf, 2008.

[15] P. D. James. The Children of Men. Vintage, 2010.

[16] D. P. Lepak and S. A. Snell. The human resource
architecture: Toward a theory of human capital
allocation and development. Academy of management
review, 24(1):31–48, 1999.

[17] C. Linehan, B. J. Kirman, S. Reeves, M. A. Blythe,
J. G. Tanenbaum, A. Desjardins, and R. Wakkary.
Alternate endings: Using fiction to explore design
futures. In CHI EA ’14, pages 45–48, Apr. 2014.

[18] M. Mannermaa. In search of an evolutionary paradigm
for futures research. Futures, 23(4):349–372, May 1991.

[19] B. C. Milburn. Modifiable futures: Science fiction at
the bench. Isis, 101(3):560–569, 2010.

[20] M. S. Miller and K. E. Drexler. Markets and
computation: Agoric open systems. The Ecology of
Computation, 1, 1988.

[21] T. Moylan. Scraps of the Untainted Sky: Science
Fiction, Utopia, Dystopia. Westview Press, 2000.

[22] P. Munz, I. Hudea, J. Imad, and R. J. Smith. When
zombies attack!: Mathematical modelling of an
outbreak of zombie infection. Infectious Disease
Modelling Research Progress, 4:133–150, 2009.

[23] M. Noether. The effect of government policy changes
on the supply of physicians: Expansion of a
competitive fringe. The Journal of Law & Economics,
29(2):231–262, 1986.

[24] D. J. Prottas. The vampire in the next cubicle: The
Americans with Disabilities Act and the undead.
Employee Responsibilities and Rights Journal,
24(1):79–89, Jan. 2012.

[25] S. Rosen. The market for lawyers. The Journal of Law
& Economics, 35(2):215–246, 1992.


